K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2021

Chắc điểm D kia là C?

\(\overrightarrow{AB}=\left(4;14\right)=2\left(2;7\right)\)

\(\Rightarrow\) Đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt

Phương trình AB:

\(7\left(x-2\right)-2\left(y-1\right)=0\Leftrightarrow7x-2y-12=0\)

\(\overrightarrow{CB}=\left(2;6\right)=2\left(1;3\right)\Rightarrow\) đường cao AH vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình AH:

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

\(\overrightarrow{AC}=\left(2;8\right)=2\left(1;4\right)\Rightarrow\) đường thẳng AC nhận (4;-1) là 1 vtpt

Phương trình AC: \(4\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow4x-y-7=0\)

Gọi \(M\left(x;y\right)\) là điểm bất kì thuộc phân giác góc A

\(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Rightarrow\dfrac{\left|7x-2y-12\right|}{\sqrt{7^2+\left(-2\right)^2}}=\dfrac{\left|4x-y-7\right|}{\sqrt{4^2+\left(-1\right)^2}}\)

\(\Leftrightarrow\sqrt{17}\left|7x-2y-12\right|=\sqrt{53}\left|4x-y-7\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=4\sqrt{53}x-\sqrt{53}y-7\sqrt{53}\\7\sqrt{17}x-2\sqrt{17}y-12\sqrt{17}=-4\sqrt{53}x+\sqrt{53}y+7\sqrt{53}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(7\sqrt{17}-4\sqrt{53}\right)x+\left(\sqrt{53}-2\sqrt{17}\right)y-12\sqrt{17}+7\sqrt{53}=0\\\left(7\sqrt{17}+4\sqrt{53}\right)x-\left(\sqrt{53}+2\sqrt{17}\right)y-12\sqrt{17}-7\sqrt{53}=0\end{matrix}\right.\)

Đây là pt 2 phân giác trong và ngoài của góc A

21 tháng 5 2020

cho tam giác ABC có A(-2;3) vá hai đư

1. Viết phương trình chính tắc của đường thẳng d đi qua điểm M ( 1 ; -3 ) và nhận vectơ u ( 1 ; 2 ) làm vectơ chỉ phương . 2. Cho đường thẳng ( d ) : x - 2y + 1 = 0 . Đường thẳng ( d' ) đi qua M ( 1 ; -1 ) và song song với ( d ) có phương trình là gì ? 3. Cho tam giác ABC có A ( -2 ; 0 ) , B ( 0 ; 3 ) , C ( 3 ; 1 ) . Đường thẳng đi qua B và song song với AC có phương trình là gì ? 4. Phương...
Đọc tiếp

1. Viết phương trình chính tắc của đường thẳng d đi qua điểm M ( 1 ; -3 ) và nhận vectơ u ( 1 ; 2 ) làm vectơ chỉ phương .

2. Cho đường thẳng ( d ) : x - 2y + 1 = 0 . Đường thẳng ( d' ) đi qua M ( 1 ; -1 ) và song song với ( d ) có phương trình là gì ?

3. Cho tam giác ABC có A ( -2 ; 0 ) , B ( 0 ; 3 ) , C ( 3 ; 1 ) . Đường thẳng đi qua B và song song với AC có phương trình là gì ?

4. Phương trình tham số của đường thẳng ( d ) đi qua điểm M ( -2 ; 3 ) và vuông góc với đường thẳng ( d' ) : 3x - 4y + 1 = 0 là gì ?

5. Cho tam giác ABC có A ( 2 ; -1 ) , B ( 4 ; 5 ) , C ( -3 ; 2 ) . Phương trình tổng quát của đường cao AH của tam giác ABC là gì ?

6. Viết phương trình tổng quát của đường thẳng ( d ) biết ( d ) đi qua điểm M ( 1 ; 2 ) và có hệ số góc k = 3 .

7. Viết phương trình đường thẳng ( d ) biết ( d ) đi qua điểm M ( 2 ; -5 ) và có hệ số góc k = -2 .

8. Phương trình đường thẳng đi qua hai điểm A ( -2 ; 4 ) và B ( -6 ; 1 ) là gì ?

9. Cho tam giác ABC có A ( -1 ; -2 ) , B ( 0 ; 2 ) , C ( -2 ; 1 ) . Đường trung tuyến BM có phương trình là gì ?

10. Cho điểm A ( 1 ; -1 ) , B ( 3 ; -5 ) . Viết phương trình tham số đường trung trực của đoạn thẳng AB .

0

1: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

2: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA\(\sim\)ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CA\cdot CE\)

NV
18 tháng 4 2020

d/ Gọi P là trung điểm AB \(\Rightarrow P\left(3;\frac{1}{2}\right)\)

Trung trực của AB vuông góc AB nên nhận (2;1) là 1 vtpt

Phương trình trung trực AB:

\(2\left(x-3\right)+1\left(y-\frac{1}{2}\right)=0\Leftrightarrow4x+2y-13=0\)

Trung trực AC qua N và vuông góc AC nên nhận \(\left(1;-2\right)\) là 1 vtpt

Pt trung trực AC:

\(1\left(x-\frac{3}{2}\right)-2\left(y-1\right)=0\Leftrightarrow2x-4y+1=0\)

Tâm đường tròn ngoại tiếp là giao điểm 2 trung trực nên tọa độ là nghiệm:

\(\left\{{}\begin{matrix}4x+2y-13=0\\2x-4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

e/ \(AB=\sqrt{5}\) ; \(AC=\sqrt{5}\) ; \(BC=\sqrt{10}\)

\(\Rightarrow AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A

\(\Rightarrow cosB=\frac{AB}{BC}=\frac{\sqrt{5}}{\sqrt{10}}=\frac{1}{\sqrt{2}}\Rightarrow B=45^0\)

NV
18 tháng 4 2020

b/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{5}{2};\frac{3}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{1}{2};\frac{3}{2}\right)=\frac{1}{2}\left(1;3\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình AM:

\(3\left(x-2\right)-1\left(y-0\right)=0\Leftrightarrow3x-y-6=0\)

c/N là trung điểm AC nên \(N\left(\frac{3}{2};1\right)\)

Đường thẳng MN song song BC nên nhận \(\left(1;3\right)\) là 1 vtpt

Phương trình MN:

\(1\left(x-\frac{3}{2}\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-\frac{9}{2}=0\)

Sửa đề: AD=AC

a: Xét ΔACE và ΔADE có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

DO đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là phân giác của góc CAB

b: Ta có: AC=AD

EC=ED

DO đó: AE là đường trung trực của CD

c: ta có: AE là đường trung trực của CD

nên AE\(\perp\)CD tại I

=>ΔAID vuông tại I

=>\(\widehat{ADI}< 90^0\)

=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)

Xét ΔCDB có \(\widehat{CDB}>90^0\)

nên BC là cạnh lớn nhất

=>BC>CD

7 tháng 2 2020

Bài 5. ÔN TẬP CUỐI NĂM

Tâm đường tròn bàng tiếp góc D có phải trung điểm của AH đâu? Xem lại đề đi anh.

7 tháng 2 2020

À, a ghi thiếu đề, từ H kẻ PQ

NV
17 tháng 6 2020

Câu 1: ko dịch được đề :)

Câu 2:

Gọi d' là đường thẳng qua A và vuông góc d

\(\Rightarrow\) d' nhận \(\left(3;2\right)\) là 1 vtpt

Phương trình d': \(3\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-7=0\)

Câu 3:

\(\overrightarrow{CB}=\left(5;-2\right)\)

Đường thẳng AH vuông góc BC nên nhận \(\left(5;-2\right)\) là 1 vtpt

Phương trình AH:

\(5\left(x-2\right)-2\left(y+2\right)=0\Leftrightarrow5x-2y-14=0\)