K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Ta có hình vẽ:
A B C x y D

a) Vì \(\begin{cases}AB\perp AC\\AB\perp xy\end{cases}\)=> AC // xy (đpcm)

b) Ta có: ABC + CBy = 90o

=> ABC + 35o = 90o

=> ABC = 90o - 35o = 55o

ACB = CBy = 35o (so le trong)

c) Vì AD là phân giác của góc BAC nên BAD = CAD = \(\frac{BAC}{2}=\frac{90^o}{2}=45^o\)

Xét Δ ADC có: DAC + ADC + DCA = 180o (tổng 3 góc của Δ)

=> 45o + ADC + 35o = 180o

=> ADC + 80o = 180o

=> ADC = 180o - 80o = 100o

2 tháng 11 2021

câu b) có thể c2 tổng 3 góc trong tam giác bằng 180 độ rồi

suy ra ABC+BAC+ ACB= 180 độ ( có 2 góc rồi thì sẽ tìm được góc ACB cũng bằng 35 độ)

5 tháng 8 2016

1)

undefined

a) Ta có: góc BAD+góc CAE+góc BAC=180 độ

Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)

Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)

Từ (1) và (2) => góc BAD= góc ACE

Xét tam giác ABD và tam giác ACE có:

góc ADB=góc AED=90 độ

AB=AC ( vì tam giác ABC vuông cân tại A)

góc BAD=góc ACE (cmt)

=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)

b) Theo câu a) Tam giác ABD=tam giác ACE

=> DA=EC và BD=AE

Mà DE=DA+AE nên DE=EC+BD

 

 

5 tháng 8 2016

Cảm ơn bạn nhayeu

 

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

24 tháng 3 2020

A B C D E

Do xy không cắt đoạn BC

=> xy //BC 

=> ECBD là hình chữ nhật'

Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)

=> \(\Delta ABD=\Delta ACE\)

=> AE=AD

=> Tam giác ADE cân tại E

\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)

=> EC=EA

Tương tự: AD=BD 

=> DE=AE+AD=EC+BD

a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :

AB = AC (gt)

^AEC = ^ADB = 900

CE = BD (gt)

=> \(\Delta\)ABD = \(\Delta\)ACE

b, Ta có xy không cắt BC

=> xy//BC

=> ^DBA= ^DAB (vị trí đồng vị)

=> \(\Delta\) BDA cân tại D

=> DA=DB

\(\Delta\)EAC cân tại E (cmt)

=> EA=EC

=> DE = AD + AC = BD + CE

1 tháng 11 2018

Giải 

Bạn cân hình cho vuông góc nha! Mình không cân được.

N A B M C E D

Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .

Do đó :

\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay

\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)

Tương tự ta cũng có :

\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)

Từ (1) và (2) suy ra :

\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)

Xét 2 tam giác ABC và EAD,chúng có : 

\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)

Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)

b) Do 2 tam giác ABC và AED = nhau ta có :

\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)

Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .

=> CM = AN

Hai tam giác AMC = AND có :

AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)

Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)

19 tháng 4 2018

đáp án là:fb_/ec(đpcm).