Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có\(\widehat{ADB}=\widehat{AFB}=90độ\left(gt\right)\)
Nên tứ giác ABDF nội tiếp ( 2 đỉnh EF cùng nhìn AB với 2 góc bằng nhau)
b) Ta có \(\widehat{AEDC}=90độ\)(góc nội tiếp chắn nửa đường tròn)
Nên ΔACE vuông tại C
Xét 2 tam giác vuông ABD và ACE có
\(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))
Nên ΔABD ~ ΔACE
Do đó \(\frac{AB}{AC}=\frac{AD}{AE}\)
Hay AB.AE=AD.AC
c) (Mình nghĩ câu này bạn ghi nhầm, theo mình thì ở đây ta phải chứng minh DF vuông góc AC)
Ta có \(\widehat{DFE}=\widehat{ABD}\)(tứ giác ABDF nội tiếp)
Mà \(\widehat{ABD}=\widehat{AEC}\)(cùng chắn \(\widebat{AC}\))
Do đó \(\widehat{DFE}=\widehat{AEC}\)
Ta lại có 2 góc này ở vị trí so le trong
Nên DF song song EC
Mà EC vuông góc AC
Suy ra DF vuông góc AC
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD
a) Chứng minh tứ giác BMFO nội tiếp
b) chứng minh HE//BD
c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )
Chịu @ _@
A B C D E O F
\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)
Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp
b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)
\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )
\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)
\(\Rightarrow DF\perp CA\)
dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD