K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...

loading...

loading...

d: \(SA^2=SB\cdot SC\)

\(SE^2=SB\cdot SC\)

=>SA=SE

Xét ΔOAS và ΔOES có

OA=OE

SA=SE

OS chung

Do đó: ΔOAS=ΔOES

=>\(\widehat{OAS}=\widehat{OES}\)

mà \(\widehat{OAS}=90^0\)

nên \(\widehat{OES}=90^0\)

=>E nằm trên đường tròn đường kính SO

mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)

nên E nằm trên đường tròn (SAOD)

a: M là điểm chính giữa của cung BC

=>\(sđ\stackrel\frown{MB}=sđ\stackrel\frown{MC}\) và MB=MC

Xét (O) có

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BM}\)

Do đó: \(\widehat{CAM}=\widehat{BAM}\)

=>AM là phân giác của góc BAC

b: Xét (O) có

\(\widehat{SAC}\) là góc tạo bởi tiếp tuyến AS và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{SAC}=\widehat{ABC}=\widehat{SBA}\)

Xét ΔSAC và ΔSBA có

\(\widehat{SAC}=\widehat{SBA}\)

\(\widehat{ASC}\) chung

Do đó: ΔSAC đồng dạng với ΔSBA

=>\(\dfrac{SA}{SB}=\dfrac{SC}{SA}\)

=>\(SA^2=SB\cdot SC\)

c: Xét (O) có

góc CKA là góc có đỉnh ở trong đường tròn chắn cung AC và BM

=>\(\widehat{CKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{BM}\right)\)

=>\(\widehat{SKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{CM}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)

mà \(\widehat{SAK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)(góc tạo bởi tiếp tuyến SA và dây cung AM)

nên \(\widehat{SAK}=\widehat{SKA}\)

=>SA=SK

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại D

Xét tứ giác SAOD có

\(\widehat{SAO}+\widehat{SDO}=90^0+90^0=180^0\)

nên SAOD là tứ giác nội tiếp

=>S,A,D,O cùng thuộc một đường tròn

 

9 tháng 3 2021

a/ Gọi P là giao cuả  AM và NK Ta có

sđ cung AN = 1/2 sđ cung AC

sđ cung BK = 1/2 sđ cung AB

sđ cung BM = 1/2 sđ cung BC

sđ cung MK = sđ cung BK + sđ cung BM = 1/2 sđ cung AB + 1/2 sđ cung BC

sđ \(\widehat{APN}=\) 1/2(sđ cung AN + sđ cung MK) = 1/2(1/2 sđ cung AC + 1/2 sđ cung AB + 1/2 sđ cung BC) = 1/4(sđ cung AC + sđ cung AB + sđ cung BC) (góc có đỉnh ở trong đường tròn có số đo bằng nửa tổng hai cung bị chắn)

Mà sđ cung AC + sđ cung AB + sđ cung BC = 360

=> sđ\(\widehat{APN}\) = 1/4x360=90 => \(AM\perp NK\)

b/ Ta có

sđ cung AK = sđ cung BK

sđ cung cung BM = sđ cung CM

\(\widehat{KCM}=\) 1/2 sđ cung MK = 1/2(sđ cung BK + sđ cung BM)

\(\widehat{MIC}=\) 1/2 (sđ cung AK + 1/2 sđ cung CM) (góc có đỉnh ở trong đường tròn có số đo bằng nửa tổng hai cung bị chắn)

\(\Rightarrow\widehat{KCM}=\widehat{MIC}\) => tam giác MIC cân tại M

24 tháng 5 2021

a)Có \(\widehat{MEC}=\widehat{MFC}\left(=90^0\right)\)

=>Tứ giác MECF nội tiếp

b)Có \(\widehat{AMB}=\widehat{ACB}\) (hai góc nội tiếp cùng chắn một cung)

\(\widehat{ACB}=\widehat{EMF}\) (hai góc nội tiếp cùng chắn một cung trong đt ngoại tiếp tứ giác MECF)

\(\Rightarrow\widehat{AMB}=\widehat{EMF}\)

Tương tự cũng có: \(\widehat{ABM}=\widehat{EFM}=\left(\widehat{ECM}\right)\)

Xét \(\Delta BMA\) và \(\Delta MEF\) có:

\(\widehat{AMB}=\widehat{EMF}\)

\(\widehat{ABM}=\widehat{EFM}\)

nên \(\Delta BMA\sim\Delta FME\left(g.g\right)\) 

\(\Rightarrow\dfrac{BM}{FM}=\dfrac{BA}{FE}\) \(\Leftrightarrow BM.EF=AB.FM\)

c) Gọi \(K=FE\cap AB\)

Có \(\widehat{MFK}=\widehat{ABM}\left(=\widehat{ECM}\right)\)

\(\Rightarrow\)Tứ giác BKMF nội tiếp

\(\Rightarrow\widehat{BKM}+\widehat{MFB}=180^0\)

\(\Rightarrow\widehat{BKM}=90^0\)

Có: \(\widehat{PAM}+\widehat{BCM}=180^0\) (vì BAMC nội tiếp do bốn đỉnh cùng thuộc đt tâm O)

\(\widehat{MCB}+\widehat{MEF}=180^0\) (vì EMCF nội tiếp)

\(\Rightarrow\widehat{PAM}=\widehat{MEQ}\) mà \(\dfrac{AP}{EQ}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}EF}=\dfrac{AB}{EF}=\dfrac{AM}{EM}\)

=> Tam giác APM và EQM đồng dạng (c.g.c)

\(\Rightarrow\widehat{APM}=\widehat{EQM}\) hay góc KPM= góc KQM

\(\Rightarrow\) Tứ giác KPQM nội tiếp

\(\Rightarrow\widehat{PKM}+\widehat{MQP}=180^0\)

\(\Rightarrow\widehat{MQP}=180^0-90^0=90^0\)

\(\Rightarrow\Delta MQP\) vuông tại Q

=> PM2=MQ2+PQ

(toi xỉu)