Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(SA^2=SB\cdot SC\)
\(SE^2=SB\cdot SC\)
=>SA=SE
Xét ΔOAS và ΔOES có
OA=OE
SA=SE
OS chung
Do đó: ΔOAS=ΔOES
=>\(\widehat{OAS}=\widehat{OES}\)
mà \(\widehat{OAS}=90^0\)
nên \(\widehat{OES}=90^0\)
=>E nằm trên đường tròn đường kính SO
mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)
nên E nằm trên đường tròn (SAOD)
a: M là điểm chính giữa của cung BC
=>\(sđ\stackrel\frown{MB}=sđ\stackrel\frown{MC}\) và MB=MC
Xét (O) có
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BM}\)
Do đó: \(\widehat{CAM}=\widehat{BAM}\)
=>AM là phân giác của góc BAC
b: Xét (O) có
\(\widehat{SAC}\) là góc tạo bởi tiếp tuyến AS và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{SAC}=\widehat{ABC}=\widehat{SBA}\)
Xét ΔSAC và ΔSBA có
\(\widehat{SAC}=\widehat{SBA}\)
\(\widehat{ASC}\) chung
Do đó: ΔSAC đồng dạng với ΔSBA
=>\(\dfrac{SA}{SB}=\dfrac{SC}{SA}\)
=>\(SA^2=SB\cdot SC\)
c: Xét (O) có
góc CKA là góc có đỉnh ở trong đường tròn chắn cung AC và BM
=>\(\widehat{CKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{BM}\right)\)
=>\(\widehat{SKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{CM}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)
mà \(\widehat{SAK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)(góc tạo bởi tiếp tuyến SA và dây cung AM)
nên \(\widehat{SAK}=\widehat{SKA}\)
=>SA=SK
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(1)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC tại D
Xét tứ giác SAOD có
\(\widehat{SAO}+\widehat{SDO}=90^0+90^0=180^0\)
nên SAOD là tứ giác nội tiếp
=>S,A,D,O cùng thuộc một đường tròn
a/ Gọi P là giao cuả AM và NK Ta có
sđ cung AN = 1/2 sđ cung AC
sđ cung BK = 1/2 sđ cung AB
sđ cung BM = 1/2 sđ cung BC
sđ cung MK = sđ cung BK + sđ cung BM = 1/2 sđ cung AB + 1/2 sđ cung BC
sđ \(\widehat{APN}=\) 1/2(sđ cung AN + sđ cung MK) = 1/2(1/2 sđ cung AC + 1/2 sđ cung AB + 1/2 sđ cung BC) = 1/4(sđ cung AC + sđ cung AB + sđ cung BC) (góc có đỉnh ở trong đường tròn có số đo bằng nửa tổng hai cung bị chắn)
Mà sđ cung AC + sđ cung AB + sđ cung BC = 360
=> sđ\(\widehat{APN}\) = 1/4x360=90 => \(AM\perp NK\)
b/ Ta có
sđ cung AK = sđ cung BK
sđ cung cung BM = sđ cung CM
sđ\(\widehat{KCM}=\) 1/2 sđ cung MK = 1/2(sđ cung BK + sđ cung BM)
sđ\(\widehat{MIC}=\) 1/2 (sđ cung AK + 1/2 sđ cung CM) (góc có đỉnh ở trong đường tròn có số đo bằng nửa tổng hai cung bị chắn)
\(\Rightarrow\widehat{KCM}=\widehat{MIC}\) => tam giác MIC cân tại M
a)Có \(\widehat{MEC}=\widehat{MFC}\left(=90^0\right)\)
=>Tứ giác MECF nội tiếp
b)Có \(\widehat{AMB}=\widehat{ACB}\) (hai góc nội tiếp cùng chắn một cung)
\(\widehat{ACB}=\widehat{EMF}\) (hai góc nội tiếp cùng chắn một cung trong đt ngoại tiếp tứ giác MECF)
\(\Rightarrow\widehat{AMB}=\widehat{EMF}\)
Tương tự cũng có: \(\widehat{ABM}=\widehat{EFM}=\left(\widehat{ECM}\right)\)
Xét \(\Delta BMA\) và \(\Delta MEF\) có:
\(\widehat{AMB}=\widehat{EMF}\)
\(\widehat{ABM}=\widehat{EFM}\)
nên \(\Delta BMA\sim\Delta FME\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{FM}=\dfrac{BA}{FE}\) \(\Leftrightarrow BM.EF=AB.FM\)
c) Gọi \(K=FE\cap AB\)
Có \(\widehat{MFK}=\widehat{ABM}\left(=\widehat{ECM}\right)\)
\(\Rightarrow\)Tứ giác BKMF nội tiếp
\(\Rightarrow\widehat{BKM}+\widehat{MFB}=180^0\)
\(\Rightarrow\widehat{BKM}=90^0\)
Có: \(\widehat{PAM}+\widehat{BCM}=180^0\) (vì BAMC nội tiếp do bốn đỉnh cùng thuộc đt tâm O)
\(\widehat{MCB}+\widehat{MEF}=180^0\) (vì EMCF nội tiếp)
\(\Rightarrow\widehat{PAM}=\widehat{MEQ}\) mà \(\dfrac{AP}{EQ}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}EF}=\dfrac{AB}{EF}=\dfrac{AM}{EM}\)
=> Tam giác APM và EQM đồng dạng (c.g.c)
\(\Rightarrow\widehat{APM}=\widehat{EQM}\) hay góc KPM= góc KQM
\(\Rightarrow\) Tứ giác KPQM nội tiếp
\(\Rightarrow\widehat{PKM}+\widehat{MQP}=180^0\)
\(\Rightarrow\widehat{MQP}=180^0-90^0=90^0\)
\(\Rightarrow\Delta MQP\) vuông tại Q
=> PM2=MQ2+PQ2
(toi xỉu)