Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I K M
a, Áp dụng định lí Pytago vào câc tam giác vuông ta được
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)
\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)
\(=AI^2+BK^2+CH^2\)
b, Đặt \(P=AK^2+BH^2+CI^2\)
\(\Rightarrow2P=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)
\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)
\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)
Ta có bđt sau \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)(tự chứng minh)
Áp dụng ta được \(2P\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)
\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)
\(\Rightarrow P\ge\frac{AB^2+BC^2+CA^2}{4}\)không đổi
Dấu "=" xảy ra <=> M là giao điểm 3 đường trung trực của tam giác ABC
a, áp dụng hệ thức lượng ta có CB.CH=CK^2
VÀ CA.CI=CK^2
TỪ đó suy ra đpcm cùng = quá CK ^2
b , DỄ DÀNG CM đc tứ giác IKCH là hcn suy ra IK=CH ; KH=IC áp dụng hệ thức lượng cuối cùng trong tam giác vg IKH Có \(\frac{1}{KM^2}=\frac{1}{IK^2}+\frac{1}{KH^2}\)<=> \(\frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\)
Cảm ơn bạn lê thị bích ngọc đã giúp đỡ mình Nhưng còn ý d) bạn chưa làm. Đây là câu trả lời cho ý d) của mình nhé ^-^
d) Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại C ta có : \(AC^2=AK.AB\)
\(CB^2=BK.AB\)
\(\Rightarrow\frac{AC^2}{BC^2}=\frac{AK.AB}{BK.AB}=\frac{AK}{BK}\)
\(\Rightarrow\frac{AC^4}{BC4}=\frac{AK^2}{BK^2}\) (1)
Mặt khác , áp dụng hệ thức lượng vào \(\Delta AKC\) vuông tại K ta có: \(AK^2=AI.AC\) (2)
vào \(\Delta BKC\) vuông tại K ta có \(KB^2=BH.BC\) (3)
Từ (1) (2) (3) \(\Rightarrow\frac{AC^4}{BC^4}=\frac{AI.AC}{BH.BC}\Rightarrow\frac{AC^3}{CB^3}=\frac{AI}{BH}\)
Câu 2a. Theo đầu bài ta có hình:
A B C M N P D E F
Nhìn hình ta thấy: SMNP = SABC - ( SMBN + SAMP + SPNC )
1) Do BN = 1/4 BC => SABN = 1/4 SABC
Do AM + MB = AB mà AM = 1/4 AB => MB = 3/4 AB => SMBN = 3/4 SABN
=> SMBN = 3/4 * 1/4 = 3/16 SABC
2) Do AM = 1/4 AB => SAMC = 1/4 SABC
Do CP + PA = CA mà CP = 1/4 CA => PA = 3/4 CA => SAMP = 3/4 SAMC
=> SAMP = 3/4 * 1/4 = 3/16 SABC
3) Do CP = 1/4 CA => SPBC = 1/4 SABC
Do BN + NC = BC mà BN = 1/4 BC => NC = 3/4 BC => SPNC = 3/4 SPBC
=> SPNC = 3/4 * 1/4 = 3/16 SABC
Từ 1), 2), 3) và phép tính trên suy ra SMNP = SABC - ( 3/16 SABC + 3/16 SABC + 3/16 SABC ) = 7/16 SABC
A B C K I M H
a ) Áp dụng đinh lí Pytago vào các tam giác vuông ta được :
\(AK^2+BH^2+CI^2=AM^2-MK^2+BM^2-MH^2+CM^2-MI^2\)
\(=\left(AM^2-MI^2\right)+\left(BM^2-MK^2\right)+\left(CM^2-MH^2\right)\)
\(=AI^2+BK^2+CH^2\)
b ) Đặt \(B=AK^2+BH^2+CI^2\)
\(\Rightarrow2B=\left(AK^2+BH^2+CI^2\right)+\left(AK^2+BH^2+CI^2\right)\)
\(=\left(AK^2+BH^2+CI^2\right)+\left(AI^2+CH^2+BK^2\right)\)
\(=\left(AK^2+BK^2\right)+\left(BH^2+HC^2\right)+\left(CI^2+IA^2\right)\)
Ta có BĐT sau : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)( tự chứng minh )
Áp dụng ta được : \(2B\ge\frac{\left(AK+BK\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CI+IA\right)^2}{2}\)
\(=\frac{AB^2}{2}+\frac{BC^2}{2}+\frac{CA^2}{2}=\frac{AB^2+BC^2+CA^2}{2}\)
\(\Rightarrow B\ge\frac{AB^2+BC^2+CA^2}{4}\) không đổi
Dấu " = " xảy ra \(\Leftrightarrow M\) là giao điểm 3 đường trung trực của tam giác ABC
Chúc bạn học tốt !!