Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{FAH}\) chung
Do đó: ΔAFH~ΔADB
=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(AF\cdot AB=AD\cdot AH\)
2: Ta có: \(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
Xét ΔAFD và ΔAHB có
\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
\(\widehat{FAD}\) chung
Do đó: ΔAFD~ΔAHB
3: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
Xét ΔAED và ΔAHC có
\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
\(\widehat{EAD}\) chung
Do đó: ΔAED~ΔAHC
=>\(\widehat{ADE}=\widehat{ACH}\)
Ta có: \(\widehat{ACH}+\widehat{BAC}=90^0\)(ΔFAC vuông tại F)
\(\widehat{ABH}+\widehat{BAC}=90^0\)(ΔABE vuông tại E)
Do đó: \(\widehat{ACH}=\widehat{ABH}\)
a)tg AEB và tg AFC có
-^AEB=^AFC
-^BEA=^FAC
=>tg AEB đồng dạng tg AFC
=>AE/AF=AB/AC
=>AE. AC=AF.AB
b) AE/AF=AB/AC
=>AE/AB= AF/AC
tgAEF và tg ABC có
-^EAF=^BAC
- AE/AB= AF/AC
=>tg AEF đồng dạng tg ABC
c) tg AEB đồng dạng tg AFC
=>^ABE=^ ACF
hay ^FBH=^ECH
tg FHB và tg EHC c ó
-^FBH=^ECH
-^FHB=^EHC
=> tg FHB và tg EHC đồng dạng
=>FH/EH=HB/HC
tg FHE và tg BHC có
- FH/EH=HB/HC
-^FHE=^BHC(2 g óc đối đỉnh)
=> tg FHE và tg BHC đồng dạng
tg ABD và CBF có
-^ADB=^CFB(=90 độ)
-^ABD=^CBF
=> tg ABD và CBF đồng dạng
=>AB/BC=BD/BF
=>BF.AB=BC.BD
Tương tự chứng minh:CE.CA=CD.BC
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698