Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì góc DAB=EAC=60
=> DAB+BAC=EAC+BAC=> DAC=BAE
-Xét tg ADC và tg ABE, ta có:
=> tg ADC = tg ABE (c.g.c)
b, Vì tg ADC = tg ABE => góc ADC=góc ABE
Mà góc ADG+ GAD+AGD=GBI+BGI+BIG=180
=> DAG=DIB=60
c, Vì tg ADC=tg ABE => CD=BE; góc ACD=góc AEB
Mà M,N lần lượt là TĐ của CD và BE => CM=EN
-Xét tg AEN và tg ACM
=> tg AEN = tg ACM (c.g.c)
=> AN=AM; góc EAN=góc CAM
=> MAC+CAN=EAN+NAC => MAN=EAC=60
=> tam giác AMN đều
d, Trên tia đối của MI lấy G: IG=IB
=> tg BIG đều => BG=BI; góc GBI=60
Mà tg ABD đều => góc DBA=60
=> DBA=GBI => DBA-GBM=GBI-GBM
=> DBG=ABI
-Xét tg BDG và tg BAI, ta có:
=> tg BDG = tg BAI (c.g.c)
=> góc DGB=góc AIB
Mà góc DGB=180-BGI
=> DGB=AIB=120 => AIB=120-60=60 (1)
Mà DIE+DIB=180
=> DIE=120 (2)
Từ (1) và (2) => đpcm.
a, Vì góc DAB=EAC=60
=> DAB+BAC=EAC+BAC=> DAC=BAE
-Xét tg ADC và tg ABE, ta có:
=> tg ADC = tg ABE (c.g.c)
b, Vì tg ADC = tg ABE => góc ADC=góc ABE
Mà góc ADG+ GAD+AGD=GBI+BGI+BIG=180
=> DAG=DIB=60
c, Vì tg ADC=tg ABE => CD=BE; góc ACD=góc AEB
Mà M,N lần lượt là TĐ của CD và BE => CM=EN
-Xét tg AEN và tg ACM
=> tg AEN = tg ACM (c.g.c)
=> AN=AM; góc EAN=góc CAM
=> MAC+CAN=EAN+NAC => MAN=EAC=60
=> tam giác AMN đều
d, Trên tia đối của MI lấy G: IG=IB
=> tg BIG đều => BG=BI; góc GBI=60
Mà tg ABD đều => góc DBA=60
=> DBA=GBI => DBA-GBM=GBI-GBM
=> DBG=ABI
-Xét tg BDG và tg BAI, ta có:
=> tg BDG = tg BAI (c.g.c)
=> góc DGB=góc AIB
Mà góc DGB=180-BGI
=> DGB=AIB=120 => AIB=120-60=60 (1)
Mà DIE+DIB=180
=> DIE=120 (2)
Từ (1) và (2) => đpcm.
xem lại chỗ đâm nhé
Cho tam giác ABC ở phía ngoài tam giác vẽ các tam giác vuông tại A đó là tam giác ABD và tam giác ACE sao cho AB = AC và AC = AE . Kẻ AH vuông góc BC . Gọi I là giao điểm của HA và DE . Chứng minh DI = IE
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
Từ tam giác DBK=tam giác DEC(cmt)
=>BK=EC (cặp cạnh t.ư)
Ta có: AB+BK=AK (B thuộc AK)
AE+EC=AC (E thuộc AC0
mà BK=EC(cmt);AB=AE(gt)
=>AK=AC
Xét tam giác AKC có:AK=AC(cmt)
=>tam giác AKC cân (ở A) (DHNB)
d)sai đề
Từ $I$ kẻ \(IM\perp DA, IN\perp AE\)
Ta có: \(\left\{\begin{matrix} \widehat{IAM}-90^0-\widehat{BAH}=\widehat{ABH}\\ \widehat{AMI}=\widehat{AHB}=90^0\end{matrix}\right.\Rightarrow \triangle IAM\sim \triangle ABH\)
\(\Rightarrow\frac{IM}{AH}=\frac{IA}{AB}\) $(1)$. Tương tự : \(\Rightarrow \triangle IAN\sim \triangle ACH\Rightarrow \frac{IN}{AH}=\frac{IA}{AC}(2)\)
Từ \((1)(2)\Rightarrow \frac{IM}{IN}=\frac{AC}{AB}=\frac{AE}{AD}\).
Do đó, \(\frac{S_{DIA}}{S_{EIA}}=\frac{IM.AD}{IN.AE}=1\Rightarrow S_{DIA}=S_{EIA}\Rightarrow ID=IE\) (đpcm)
Đợi mình đi học về giải cho
giúp mk vs
mk cx cần bài này