K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

mk thử xem : \(\frac{HN}{BN}\)là hằng số khác 0

28 tháng 4 2016

A B c M N P

Xét \(\Delta ABN\) và \(\Delta ACP\) có 

^\(BAN=\) ^\(CAP\) (góc chung)

^\(ANB=\) ^\(APC\) (\(=90^o\) )

\(\Rightarrow\Delta ABN~\Delta ACP\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AN}{AP}\Rightarrow AB.AP=AN.AC\)  

Vậy ....

B, 

Từ \(\frac{AB}{AC}=\frac{AN}{AP}\Rightarrow\frac{AP}{AC}=\frac{AN}{AB}\)

Xét \(\Delta APNv\text{à}\Delta ACB\)  

^\(PAN=\) ^\(CAP\) (góc chung)

\(\frac{AP}{AC}=\frac{AN}{AB}\) (CMT)

\(\Rightarrow\Delta APN~\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\) ^\(APN=\) ^\(ACP\) (2 GÓC TƯƠNG ỨNG)

KL....( nhớ k cho mk nha)

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

3: ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN

23 tháng 4 2016

AI bit chi dum di

23 tháng 4 2016

vẽ hình

a xét tam giác ABD và tam giác ACE có :

chung góc BAC

góc BDA = góc CEA = 90 độ

=> tam giác ABD đồng dạng tam giác ACE (g.g)

b, xét tam giác EHB và tam giác DHC có

góc BDC = góc CFB = 90 độ 

góc BHF = góc DHC ( đối đỉnh )

=> tam giác EHB đồng dạng với tam giác DHC (g.g)

=> \(\frac{HB}{HC}=\frac{HE}{HD}\) 

=> HD . HB = HE . HC ( đpcm )

c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)  => \(\frac{AE}{AC}=\frac{AD}{AB}\)

xét tam giác ADE và tam giác ABC có 

chung góc BAC

\(\frac{AE}{AC}=\frac{AD}{AB}\) 

=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c) 

=> góc ADE = góc ABC ( đpcm)