Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối E và F
Xét tam giác AID ta có:
MF//DI( cùng vuông góc AB)
=>\(\dfrac{AF}{AI}=\dfrac{AM}{AD}\)(Đlý talet)(1)
Xét tam giác AEN ta có
EM//DN( cùng vuông góc AC)
=> \(\dfrac{AE}{AN}=\dfrac{AM}{AD}\) (Đlý talet)(2)
Từ (1) và(2) suy ra
\(\dfrac{AE}{AN}=\dfrac{AF}{AI}\)
=>EF//IN
Xét tam giác BFC ta có
DI//CF( cùng vuông góc AB)
=>\(\dfrac{BI}{BF}=\dfrac{BD}{BC}\)(Thales)(3)
Xét tam giác BEC, tam giác BEC, tam giác BFC chứng minh tương tự(Tu chứng minh tương tự nhoa)
Ta được \(\dfrac{BK}{BE}=\dfrac{BD}{BC}\)(4)
\(\dfrac{CN}{CE}=\dfrac{CD}{BC}\) (5)
\(\dfrac{CM}{CF}=\dfrac{CD}{BC}\)(6)
Từ (3) và (4)=> \(\dfrac{BI}{BF}=\dfrac{BK}{BE}\)=> KI//EF
Từ (5) và (6)=>\(\dfrac{CN}{CE}=\dfrac{CD}{BC}\)=> MN//EF
Ta có
IN//EF(cmt)
IK//EF(cmt)
MN//EF(cmt)
=> I,N,K,M thẳng hàng
Nối E và F
Xét tam giác AID ta có:
MF//DI( cùng vuông góc AB)
=>\(\dfrac{AF}{AI}=\dfrac{AM}{AD}\)(Đlý talet)(1)
Xét tam giác AEN ta có
EM//DN( cùng vuông góc AC)
=> \(\dfrac{AE}{AN}=\dfrac{AM}{AD}\) (Đlý talet)(2)
Từ (1) và(2) suy ra
\(\dfrac{AE}{AN}=\dfrac{AF}{AI}\)
=>EF//IN
Xét tam giác BFC ta có
DI//CF( cùng vuông góc AB)
=>\(\dfrac{BI}{BF}=\dfrac{BD}{BC}\)(Thales)(3)
Xét tam giác BEC, tam giác BEC, tam giác BFC chứng minh tương tự(Tu chứng minh tương tự nhoa)
Ta được \(\dfrac{BK}{BE}=\dfrac{BD}{BC}\)(4)
\(\dfrac{CN}{CE}=\dfrac{CD}{BC}\) (5)
\(\dfrac{CM}{CF}=\dfrac{CD}{BC}\)(6)
Từ (3) và (4)=> \(\dfrac{BI}{BF}=\dfrac{BK}{BE}\)=> KI//EF
Từ (5) và (6)=>\(\dfrac{CN}{CE}=\dfrac{CD}{BC}\)=> MN//EF
Ta có
IN//EF(cmt)
IK//EF(cmt)
MN//EF(cmt)
=> I,N,K,M thẳng hàng
Hình bạn tự vẽ nhé. EF cắt AH tại L.
Xét tam giác AIM vuông tại I(MI vuông góc AB) có HF//IM ( H là trực tâm nên HF vuông góc AB, từ vuông góc đến song song >> HF//IM) >> \(\frac{AF}{AI}=\frac{AH}{AM}\left(Talet\right)\)
CMTT >> \(\frac{AE}{AK}=\frac{AH}{AM}\left(Talet\right)\)>> \(\frac{AF}{AI}=\frac{AE}{AK}\). Theo Talet đảo có EF // IK.
Xét tam giác AIK có EF // IK >> AEF đồng dạng AIK ( bạn tự cm, quá dễ) >> góc AFE = góc AIK và góc AEF = góc AKI
Xét tam giác AFL và tam giác AID : chung góc A và AFL = AID (cmt) >> AFL đồng dạng AID >> ALF = ADI đồng vị >> ID // EL
CMTT thì LE // DK. Có E,L,F thẳng hàng nên theo tiên đề Euclid suy ra I,D,K thẳng hàng.
bạn ơi, AFL=AID đang cần chứng minh mà, AFL=AIK mới đúng. nếu AFL=AID=AIK thì I,D,K thẳng hàng rồi.
ai biết phim hoạt hình gì ko phim hoạt hình có phép thuật ệ chỉ cho mình với
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng