K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

a) Giả sử m không cắt AB, AC. Thật vậy ta suy ra m // AB và m // AC. Suy ra AB // AC // BC (mâu thuẫn với giả thiết ABC là tam giác). Vậy ta có đpcm.

b) Giả sử m không cắt AC. Thật vậy ta suy ra m // AC. Suy ra AC // BC (mâu thuẫn với giả thiết ABC là tam giác). Vậy ta có đpcm.

28 tháng 7 2017

bn vẽ hình cho mình đc k

a: m//BC

BC cắt AB tại B

Do đó: m cắt AB

m//BC

BC cắt AC tại C

Do đó: m cắt AC

b: m//BC

BC cắt AC

Do đó: m cắt AC

15 tháng 10 2016

Xin giải đáp hộ dùm. Chân thành cảm ơn

15 tháng 10 2016

Tuỳ nếu m ở bên ngoài tam giác ABC thì k cắt AC và AB còn ở trong thì cắt

22 tháng 11 2019

A B C M I K

a) Xét tứ giác MIBK có :

MI // BC ( GT ) 

MB // IK ( vì AB // IK )

=> MIBK là hình bình hành 

=> MB = IK ( tính chất )

Mà MB =AM

=> IK = AM 

b)Cm MI đường trung bình là ra

c) Từ ý b = > AI = IC

22 tháng 11 2019

Mình nhớ là lớp 7 chưa học hình bình hành. Nếu đã được học thì tham khảo thêm cách làm bạn Việt Hoàng.

A B C M I K

Nhắc lại đề bài 1 chút: Chúng ta có: M là trung điểm AB; MI//BC và IK //AB

a) Nối M, K. 
Xét \(\Delta\)MIK và \(\Delta\)KBM có:

^IMK = ^BKM ( so le trong; MI//BC )

MI chung 

^IKM = ^BMK ( so le trong; IK//AB )

=> \(\Delta\)MIK = \(\Delta\)KBM ( g.c.g)

=> IK = BM ( cạnh tương ứng ) (1)

Mặt khác M là trung điểm AB ( giả thiết ) => AM = BM ( 2)

Từ (1); (2) => AM = IK.

b) Có: AB // IK => ^AMI = ^MIK ( so le trong )

          MI // BC => ^MIK = ^IKC ( so le trong )

=> ^AMI = ^IKC ( 3) 

Lại có : AB // IK => ^CIK = ^CAB ( đồng vị )  => ^CIK = ^IAM  (4)

Xét\(\Delta\)CIK và \(\Delta\)IAM có:

^AMI = ^IKC ( theo (3))

AM = IK ( theo a)

^IAM = ^CIK  ( theo ( 4)

=> \(\Delta\)CIK = \(\Delta\)IAM ( g.c.g)

c)  \(\Delta\)CIK = \(\Delta\)IAM  ( theo câu b)

=> AI = IC ( cạnh tương ứng )