Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác MHB và tam giác MKC có:
MH=HK(gt)
góc CMK= góc HMB( đối đỉnh)
BM=MC(M là trung điểm của MC)(gt)
=> tam giác MHB= tam giác MKC(c.g.c)
=> góc MHB=góc CKM
=> MK vuông góc với CK
b) Kẻ CH
Ta có: MH vuông góc với AB(gt)=> KH vuông góc với AB(1)
AC vuông góc với AB(tam giác ABC vuông tại A)(2)
Từ (1) và (2) => AC // HK(cùng vuông góc với AB)
=> góc ACH= góc CHK( so le trong)
Xét tam giác ACH vuông tại A và tam giác KHC vuông tại K có:
CH là cạnh chung
góc ACH= góc CHK(chứng minh trên)
=> Tam giác ACH= tam giác KHC( cạnh huyền góc nhọn)
Còn câu c mình chịu
a ) Xét tam giác MHB và tam giác MKC có :
BM = MC (gt)
Góc HMB = Góc CMK ( đối đỉnh )
MK = MH (gt)
=> tam giác MHB = tam giác MKC (c - g - c)
b ) Theo a ) tam giác MHB = tam giác MKC (c - g - c) => Góc BHM = Góc MKC ( Góc tương ứng )
Mà Góc BHM = 90 độ => Góc MKC = 90 độ
Tứ giác AHKC có Góc A + Góc H + Góc C + Góc K = 360 độ
<=> 3.90 + Góc C = 360 => Góc C = 90 độ
=> Tứ giác AHKC là hình chữ nhật => AC = HK
c ) đang nghĩ
C) theo kết quả câu a và b của đinh đức hùng ta được. AH=HB=KC. Từ đó suy ra H là trung điểm AB. CH là trung tuyến. AM cũng là trung tuyến => G là trọng tâm => BG là trung tuyến từ đỉnh B => I là trung điểm AC
a, xét tam giác MHC và tam giác MKC có : MH = MK (Gt)
MB = MC do M là trđ của BC (gt)
góc CMK = góc HMC (đối đỉnh)
=> tam giác MHC = tam giác MKC (c-g-c)
b, kẻ CH
có CA _|_ AB
KH _|_ AB
=> AC // KH (đl)
=> góc ACH = góc CHK (slt)
xét tam giác AHC và tam giác KCH có : CH chung
góc CAH = góc CKH = 90 tự cm....
=> tam giác AHC = tam giác KCH (ch-gn)
=> AC = KH (đn)
c, tam giác AHC = tam giác KCH (Câu b)
=> CK = AH (đn)
có CK = HB do tam giác MCK = tam giác MBH (Câu a)
=> AH = HB mà H nằm giữa A và B
=> H là trung điểm của AB (đn)
M là trung điểm của BC (Gt)
xét tam giác ABC có CH cắt AM tại G
=> G là trọng tâm của tam giác ABC
=> CI là đường trung tuyến của tam giác ABC
=> I là trđ của AC