Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)
=>\(a^3+b^3+c^3>=3abc\)
\(\dfrac{\tan A}{\tan B}=\dfrac{\sin A}{\cos A}.\dfrac{\cos B}{\sin B}=\dfrac{\dfrac{a.\sin B}{b}\left(\dfrac{a^2+c^2-b^2}{2ac}\right)}{\dfrac{b^2+c^2-a^2}{2bc}.\sin B}=\dfrac{\dfrac{\sin B.\left(a^2+c^2-b^2\right)}{2bc}}{\dfrac{\sin B.\left(b^2+c^2-a^2\right)}{2bc}}=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}\)
Lời giải:
Áp dụng bđt AM-GM:
\(a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2\geq 2(ab+b+1)\)
\(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\). Tương tự với các phân thức còn lại:
\(\Rightarrow 2\text{VT}\leq \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=A\)
Dựa vào đk \(abc=1\) dễ thấy \(A=1\).
Cách CM:
\(A=\frac{c}{1+bc+c}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{c+1}{bc+c+1}+\frac{bc}{c+1+bc}=1\) (đpcm)
\(\Rightarrow \text{VT}\leq \frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Ta co: a3b2=(a2b2)a , a2b3=(a2b2)b => a3b2>a2b3( vi a>b) (1)
b3c2=(b2c2)b , b2c3=(b2c2)c => b3c2>b2c3( vi b>c) (2)
c3a2=(a2c2)c , a3c2=(a2c2)a => c3a2<a3c2 ( vi c<a) (3)
Vi b+c>a ( bdt trong tam giac)
=> dpcm
Bai nay phai xet trong tam giac thi moi dung
Ta có
\(a< b+c\left(bđt\Delta\right)\)
\(\Rightarrow2a< a+b+c\)
\(\Rightarrow2a< 2\)
\(\Rightarrow a< 1\)
\(\Rightarrow-a>-1\)
\(\Rightarrow1-a>0\)
Tương tự với b và c
\(\Rightarrow\begin{cases}1-b>0\\1-c>0\end{cases}\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc>0\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)
\(\Rightarrow1-2+ab+bc+ca>abc\)
\(\Rightarrow-1+ab+bc+ca>abc\)
\(\Rightarrow-2+2ab+2bc+2ca>2abc\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca-2>2acb+a^2+b^2+c^2\)
Áp dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)
\(\Rightarrow2abc+a^2+b^2+c^2< 2\)
đpcm
a<b+c => 2a<a+b+c=2=>a<1=> b<1,c<1
=> (1-a)(1-b)(1-c)>0. Rút gọn ta được
ab+bc+ca >1+abc
Ta lại có: (a+b+)^2 =a^2+b^2+c^2 +2(ab+bc+ca)
=> 4= a^2+b^2+c^2+2(ab+bc+ca)
=> 4> a^2+b^2+c^2+2(1+abc)=> 4>a^2+b^2+c^2+2+2abc
=> a^2+b^2_c^2+2abc<2
Lời giải:
Theo BĐT Schur bậc 3:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)
\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)
\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)
Do đó:
\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)
\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)
Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)
\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.
\(a^5+a+a+a>=4\sqrt[4]{a^8}=4a^2\)
Làm tương tự rồi cộng vế ta được:
\(VT\ge4\left(a^2+b^2+c^2\right)-3\left(a+b+c\right)\ge4\left(a^2+b^2+c^2\right)-3\sqrt{3\left(a^2+b^2+c^2\right)}=4.3-3\sqrt{3.3}=3\)
1. Ta sẽ chứng minh dựa trên các kết quả quen thuộc sau về tâm I của đường tròn nội tiếp tam giác:
\(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
Và: \(a.IA^2+b.IB^2+c.IC^2=abc\)
Đẳng thức thứ nhất chỉ cần dựng hình bình hành AMIN, sau đó sử dụng định lý phân giác các góc B và C.
Đẳng thức thứ hai ta chỉ cần lấy 1 điểm P nào đó đối xứng I qua AC, gọi D, E, F là tiếp điểm của (I) với BC, AC, AB, sau đó sử dụng tỉ lệ diện tích:
\(\dfrac{S_{AEIF}}{S_{ABC}}=\dfrac{S_{AIK}}{S_{ABC}}=\dfrac{AI.AK}{AB.AC}=\dfrac{IA^2}{bc}\)
Tương tự và cộng lại ...
Từ đó:
\(a.MA^2+b.MB^2+c.MC^2=a.\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+b\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+c.\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)
\(=\left(a+b+c\right)MI^2+a.IA^2+b.IB^2+c.IC^2+2\overrightarrow{MI}\left(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\)
\(=\left(a+b+c\right)MI^2+abc\ge abc\)
Dấu "=" xảy ra khi \(MI=0\) hay M là tâm đường tròn nội tiếp
2. Do a;b;c là độ dài 3 cạnh của tam giác, thực hiện phép thế Ravi:
Đặt \(\left(a;b;c\right)=\left(x+y;y+z;z+x\right)\)
BĐT cần chứng minh tương đương:
\(4\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\ge3\left(x^3+y^3+z^3+3xyz+xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
Đây là BĐT Schur bậc 3