K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

a) Ta có : d // BC 

=> B'C' // BC 

Xét \(\Delta AB'H'\)và \(\Delta ABH\)( B'H' // BH )

Theo hệ quả của định lý Ta-lét 

=> \(\frac{AB'}{AB}=\frac{AH'}{AH}\)(1)

Xét \(\Delta AB'C'\) và \(\Delta ABC\)( B'C' // BC )

Theo hệ quả của định lý Ta-lét

=> \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(2)

Từ (1) và (2) 

=> \(\frac{AH'}{AH}=\frac{B'C'}{BC}\)( ĐPCM )

b) \(\frac{SAB'C'}{SABC}=\frac{\frac{1}{2}AH'.B'C'}{\frac{1}{2}AH.BC}=\frac{AH'}{AH}.\frac{B'C'}{BC}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)

=> \(SAB'C'=\frac{1}{9}\Rightarrow SAB'C'=\frac{SABC}{9}=\frac{67,5}{9}=7,5\left(cm^2\right)\)

16 tháng 5 2016

AB^2+AC^2=12^2+16^2=20^2

BC=20^2                                     SUY RA tam giac ABC vuong tai A

xet tam giac AHBva tam giac AbC(A=h=90):

ABH la goc chung suy ra 2 tam giac dong dang

b,vi ti so dien h bang binh  phung ti so dong dang suy ra dien tinh abc/dien tinh abh=ab/acsuy ra dien tinh abh=72

thoi ban roi lam the thoi

13 tháng 3 2022

Sai rồi

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc HBA chung

Do đó: ΔHBA\(\sim\)ΔABC

b: Xét ΔBAC có BD là phân giác

nên DA/DC=BA/BC(1)

Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(2)

Ta có: ΔHBA\(\sim\)ΔABC

nên BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=DA/DC

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

 
21 tháng 2 2018

Hình:

A B C H 120 289 M

~~~~

Kẻ đường trung tuyến AM

Ta có: AM = \(\dfrac{1}{2}BC=HM=\dfrac{289}{2}=144,5\)

Áp dụng đl py-ta-go vào tg AHM vuông tại H có:

\(HM=\sqrt{AM^2-AH^2}=\sqrt{144,5^2-120^2}=80,5\)

=> BH = BM - HM = 144,5 - 80,5 = 64

Áp dụng py-tago vào tg ABH vuông tại H có:

\(AB^2=BH^2+AH^2=18496\Rightarrow AB=136\)

=> \(AC=\sqrt{289^2-136^2}=255\)

Vậy AB = 136 ; AC = 255