K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

ABCKHM----

a) Xét tứ giác AHCK ta có:

 Vì O trung điểm AC

K đối xứng vs H qua O => O trung điểm HK

Mà AC và HK cắt nhau tại trung điểm O

=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)

Lại có ^AHC=90( AH là đường cao)

=> AHCK là hcn (hbh có 1 góc vuông)

b) Xét tứ giác ABMC có:

M đối xứng với A qua H => AM là đường trung trực 

=> AB=AC (1)

Mặt khác:M đối xứng vs A qua H=> H trung điểm AM

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung tuyến của tam giác ABC

=>H là trug điểm BC (HB=HC)

mà AM và BC cắt nhau tại trug điểm H

Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)

Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)

c) Xét tứ giác ABHK có:

Vì HB=HC (cmt)

mà AK=HC ( AKHC là hcn)

=> AK=BH 

Lại có AK//BC (AKHC là hcn)

=>AK//BH 

Nên AKBH là hbh (  2 cạnh đối // và = nhau)

d) VÌ HB=HC=BC/2 (cm câu a)

=> HC=6/2=3 cm

Áp dụng công thức tính S và hcn AKHC ta có:

SAKHC=AH.HC

=> SAKHC=4.3=12 (cm2)

Vậy  SAKHC=12 cm2

7 tháng 9 2021

a, Xét tứ giác AHCK có:

I là trung điểm KH

I là trung điểm AC

Nên tứ giác AHCK là hình bình hành

Lại có: góc H=90 độ do AH là đường cao của tam giác ABC

Vậy tứ giác AHCK là hình chữ nhật

b, Xét tứ giác ABHK có:

AK//CH do H thuộc CB và CH//AK

KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH

Vậy tứ giác ABHK là hình bình hành

Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

16 tháng 12 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành