Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $A$. Vì $ABC$ cân tại $A$ nên $H$ là trung điểm $BC$
Ta có:
\(S_{ABC}=\frac{AH.BC}{2}=\frac{h_C.AB}{2}\)
\(\Rightarrow BC=\frac{h_C.AB}{AH}=\frac{12AB}{15,6}=\frac{10}{13}AB\)
\(\Rightarrow BH=\frac{5}{13}AB\)
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=AB^2-(\frac{5}{13}AB)^2$
$\Leftrightarrow 15,6^2=\frac{144}{169}AB^2$
$\Rightarrow AB=16,9$
$\Rightarrow BC=\frac{10}{13}AB=13$ (cm)
đặt BC=x
tam giác AHC vuông tại H và tam giác BKC vuông tại Kcó góc C chung
=> tam giác AHC đồng dạng tam giác BKC (g-g)
=> AH/BK=HC/KC hay 15,6/12=(x/2)/KC
=> KC=6x/15,6=5x/13
tam giác BKC vuông tại K (Pitago)
=> BC^2=BK^2+KC^2
=> x^2=12^2+(5x/13)^2
=> x=13
vậy BC=13cm
Đặt BC = 2x, từ tính chất của tam giác cân ta suy ra CH = x
Áp dụng định lí Pitago tính được AC =
Từ KBC HAC
hay
Đưa về phương trình 15,62 + x2 = 6,76x2
Giải phương trình trên ta được nghiệm dương x = 6,5
Vậy BC = 2.6,5 = 13(cm)