K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình nha!!!

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung trực của tam giác ABC.

=> H là trung điểm của BC

=> HB = HC = BC/2 = 6/2 = 3

Tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\) (định lí Pytago)

\(AH^2=AB^2-BH^2\)

\(AH^2=5^2-3^2\)

\(AH^2=25-9\)

\(AH^2=16\)

\(AH=\sqrt{16}\)

\(AH=4\)

28 tháng 4 2016

BH=3cm

AH=4cm

20 tháng 4 2016

xét tam giác abh và tam giác ach

có       góc h1=góc h2

           ab=ac

            ah chung

=>tam giác abh=tam giác ach(ch.cgv)

=>bh=6cm:2=3cm

áp dụng định lý py-ta-go vào tam giác abh

ta có ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah=4cm

3 tháng 5 2021

a) △ABC cân tại A có AH là đường cao

⇒ AH là đường trung tuyến

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)

△AHB vuông tại H có \(AB^2=AH^2+HB^2\\ \Rightarrow AH=\sqrt{AB^2-HB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

b) △ABC có AH là đường trung tuyến

G là trọng tâm

\(\Rightarrow G\in AH\) hay A; G; H thẳng hàng

c) △ABC cân tại A có AH là đường cao

⇒ AH là đường phân giác

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

△ABG và △ACG có:

\(AB=AC\\ \widehat{BAG}=\widehat{CAG}\\ AG:\text{cạnh chung}\)

\(\Rightarrow\text{△ABG = △ACG}\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABG}=\widehat{ACG}\)

14 tháng 3 2017

xét tg ABH va tg ACH, có

AHB=AHC(=90đ)

AB=AC(tg ABC cân tại a)

AH cạnh chung

Do đó, tg ABH=tg ACH(ch-cgv)

=>HB=HC(tương ứng)

Vậy, HB=HC(DCCM)

bcó BC=6cm=>BH+CH=6cm

lại có BH=CH (theo câu a)

Do đó, BH+BH=6cm

hay 2BH=6cm => BH=3cm

Áp dụng định lý Py-ta-go vao tg ABH vuông tại H, ta có:

AH2+BH2=AB2

hay AH2=AB2-BH2

=>AH2=52-32

=>AH2=25-9

=>AH2=16

=>AH=4( vì AH>0)

Vậy AH=4cm

k cho mình nha, bài trình bày thế này 10 điểm 100% luôn

14 tháng 3 2017

(Hương tự vẽ hình!)

a) Ta có \(\widehat{ABC}\)cân tại \(A\Rightarrow AH\)vừa là đường cao vừa là trung tuyến

\(\Rightarrow HB=HC\)

b) Ta có: \(HB=HC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\)vuông tại \(H\)có:

\(AH^2+BH^2=AB^2\left(pytago\right)\)

\(AH^2+3^2=5^2\)

\(AH^2+9=25\Rightarrow AH^2=25-9=16\)

\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)

28 tháng 4 2016

a) Vì trong tg cân, đường cao cũng là đường trung tuyến, trung trực, đường phân giác nên đường cao AH chính là đường trung tuyến ứng với cạnh BC trong tg ABC

\(\Rightarrow\) HB = HC = 1/2.BC = 1/2.6 = 3 (cm)

\(\Rightarrow\) \(AH^2=BA^2-HB^2=5^2-3^2=16\)

\(\Rightarrow\) AH = 4(cm)

b) Vì AH là đường trung tuyến ứng với cạnh BC của tg ABC nên trọng tâm G của tg ABC cũng thuộc đường cao AH

\(\Rightarrow\) A,G,H thẳng hàng

24 tháng 4 2018

A B C H G

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

24 tháng 4 2018

a)

Ta có tam giác ABC cân tại A ( gt )

Mà AH là đường cao 

Nên AH cũng là đường trung tuyến của tam giác ABC => H là trung điểm BC

=> BH = CH = BC / 2 = 6 / 2 = 3 cm

Xét tam giác AHB vuông tại H 

Ta có : AB= AH2 + BH( Py-ta-go )

            52   = AH2 + 32

=> AH2 = 16

=> AH = 4 cm

b)

Ta có G là trọng tâm của tam giác ABC ( gt )

=> AG là đường trung tuyến ứng với cạnh BC trong tam giác ABC 

mà AH cũng là đường trung tuyến ứng với cạnh BC trong tam giác ABC ( chứng minh ở câu a )

=> A,G,H thẳng hàng

c)

gọi CG cắt AB tại E ; BG cắt BC tại F

vì G là trọng tâm => CE ; BF là đường trung tuyến 

=> E là trung điềm AB ; F là trung điểm AC

Ta có EA = BA / 2 = 5 / 2 = 2,5 cm

AF = AC / 2 = 5 / 2 = 2,5 cm

Xét tam giác AEC và tam giác AFB 

ta có : AE = AF = 2,5

          góc BAC chung 

          AC = AB = 5

Nên 2 tam giác = nhau ( c-g-c )

=> góc ABG = góc ACG ( tương ứng )

31 tháng 5 2020

xét tam giác ABM và tam giác ACM có 

AB=AC(gt)

AH chung

AHB=AHC(=90 độ)

=> tam giác ABH= tam giác ACH(ch-cgv)

=> BH=CH (hai cạnh tương ứng)

=> H là trung điểm của BC=> BH=CH=6/2=3cm

Áp dụng định lý pytago vào tam giác vuông ABH

=> AB^2=AH^2+BH^2

=>AH^2=AB^2-BC^2

=>AH^2=5^2-3^2

=>AH^2=25-9

=>AH^2=16

=>AH=4(AH lớn hơn 0)

b) Vì H là trung điểm của BC=> AH là trung tuyến 

mà G là trọng tâm của tam giác ABC

=> G thuộc 3 đường trung tuyến của tam giác ABC

=> A,G,H thẳng hàng