Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác
b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)
c) I nằm trên trung điểm BC và trung điểm AC
D)
Ta có: BM=ME ( TG AMC= TG CME)
=> BE = 2 BM
mà BI =2/3 BM ( I là trọng tâm)
=> BI= 1/3 BE
=> 3 BI = BE
Xét TG AEB, ta có :
BE < AB+ AE ( Bất đẳng thức trong TG)
mà BE= 3 BI( cmt)
=> 3 BI< AB + AE
a) xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
b)Xét tam giac ABC cân tại A ta có
AM la đường phân giác (gt)
-> AM là đường cao
-> AM vuông góc BC
mà NC vuông góc BC (gt)
nên AM//NC
ta có
góc BAM = goc ANC (2 góc đồng vị và AM//CN)
góc CAM=góc ACN (2 góc sole trong và AM//CN)
góc BAM = góc CAM ( tam giac ABM= tam giac ACM)
-> goc ANC = góc ACN
=> tam giac ANC cân tại A
c)ta có
AB=AC ( tam giac ABC cân tại A)
AN=AC ( tam giac ANC cân tại A)
-> AB=AN
-> A là trung điểm BN
Xét tam giác ABC cân tại A ta có
AM là tia phấn giác góc BAC (gt)
-> AM là đường trung tuyến
-> M là trung điểm BC
Xét tam giac BCN ta có
CA là đường trung tuyến ( A là trung điểm BN)
NM là đường trung tuyến ( M là trung điểm BC)
CA cắt NM tại G (gt)
-> G là trọng tâm tam giac BCN
d)ta có MC=BC:2 ( M là trung điểm BC)
MC=18:2=9 (cm)
Xét tam giác BNC ta có
NM là đường trung tuyến (M là trung điểm BC)
G là trọng tâm (cmc)
-> MG=1/3 MN->MN=3MG=3.5=15
Xét tam giác MNC vuông tại C ta có
MN2=NC2+MC2 ( định lý pitago)
152=NC2+92
NC2=152-92=144
NC=12
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
a: Ta có: \(AN=NB=\dfrac{AB}{2}\)
\(AM=MC=\dfrac{AC}{2}\)
mà AB=AC
nên AN=NB=AM=MC
Xét ΔNBC và ΔMCB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó: ΔNBC=ΔMCB
b: Xét ΔABC có
BM,CN là các đường trung tuyến
G là trọng tâm
Do đó: BM cắt CN tại G
=>\(GB=\dfrac{2}{3}MB;GC=\dfrac{2}{3}CN\)
mà MB=CN
nên GB=GC
=>\(\widehat{GBC}=\widehat{GCB}\)
Ta có: \(\widehat{GBC}+\widehat{GEC}=90^0\)(ΔECB vuông tại C)
\(\widehat{GCB}+\widehat{GCE}=90^0\)
mà \(\widehat{GBC}=\widehat{GCB}\)
nên \(\widehat{GEC}=\widehat{GCE}\)
=>ΔGEC cân tại G
c: ta có: BG=2/3BM
=>BG=2GM
mà BG=GE(=GC)
nên GE=2GM
=>M là trung điểm của GE
Xét ΔEBC có
G là trung điểm của EB
GD//BC
Do đó: D là trung điểm của EC
Xét ΔEGC có
GD,CM là các đường trung tuyến
GD cắt CM tại O
Do đó: O là trọng tâm của ΔEGC