Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C 13 13 10
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) \(HB=HC=\frac{BC}{2}=\frac{10}{2}=5cm\)
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: \(AB^2=AH^2+BI^2\)
hay:\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}=12\)
Vậy AH=12cm
A B C H a)
theo giả thiết ta có :
AH là đường trung tuyến \(\Rightarrow BH=HC\)
xét \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\) (gt)
\(AH\) chung
\(BH=HC\) ( cmt)
\(\Rightarrow\Delta AHB=\Delta AHC\) (c.c.c)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng )
b)
ta có : \(\widehat{AHB}+\widehat{AHC}=180^0\) ( kề bù )
mà \(\widehat{AHB}=\widehat{AHC}\) (theo a)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
c) \(BH=HC=\frac{10}{2}=5\) (cm)
xét \(\Delta AHB\perp\) tại H
áp dụng định lý py-ta-go ta có:
\(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=169-25=144=\sqrt{144}=12\) (cm)
ban tu ve hinh nha
a) Xet tam giac ahb ca tam giac ahc co
ab=ac(tam giac abc can tai a)
ah chung
hb=hc(t\c duong trung tuyen trong tam giac)
\(\Rightarrow\)tam giac ahb=tam giac ahc(c-c-c)
b) vi tam giac ahb=tam giac ahc nen
goc ahb=ahc(2 goc t\u) ma 2 goc nay ke bu nen ahb=ahc=1\2.180=90 do
c) ap dung dinh ly pi ta go trong tam giac ahb(goc h=90 do) co
ah^2=ab^2-hb^2
ah^2=13^2-(10\2)^2
ah^2=13^2-5^2
ah^2=169-25
ah^2=144
ah=\(\sqrt{144}\)
ah=12
k dum mk nha
a) Xét hai tam giác AHB và AHC ta có
AB = AC (gt)
\(\widehat{B}=\widehat{C}\)(gt)
BH = HC (gt)
Do đó: \(\Delta AHB=\Delta AHC\)(c-g-c)
b) Ta có: \(\Delta AHB=\Delta AHC\)(câu a)
=> \(\widehat{AHB}=\widehat{AHC}\)(cặp góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
c) Ta có BH = HC (gt)
Mà BH + HC = BC
hay BH + HC = 10 (cm)
=> BH = HC = 5 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông ABH có
\(AB^2-BH^2=AH^2\)
\(13^2-5^2=AH^2\)
\(12^2=AH^2\)
=> AH = 12
P/s: k hộ thần =))))
A B C H I I
a) Xét \(\Delta\)AHB và \(\Delta\)AHC có:
AB=AC (\(\Delta\)ABC cân tại A)
BH=HC (H là trung điểm BC)
AH chung
=> △AHB=△AHC (c.c.c)
b) Xét △ABC có H là trung điểm BC
=> AH là đường trung tuyến của △ABC
mà △ABC cân tại A (gt) => AH trùng với đường cao
=> AH _|_ BC. Mà H là trung điểm BC
=> AH là đường trung trực của BC (đpcm)
b) Có H là trung điểm BC => \(BH=CH=\frac{BC}{2}\)mà BC=10cm
=> \(BH=CH=\frac{10}{2}=5cm\)
Có AH _|_ BC (cmt) => △ABH cân tại H
Áp dụng định lý Pytago vào △ABH vuông tại H, ta có:
AH2+BH2=AB2
=> AH2=AB2-BH2
Thay BH=5(cm); AB=13(cm)
=> AH2=132-52
=> AH2=144
=> AH=12(cm) (AH>0)
a: XétΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=BC/2=18(cm)
nên AH=24(cm)
refer
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: AB2=AH2+BI2AB2=AH2+BI2
hay:132=AH2+52132=AH2+52
⇒AH2=132−52⇒AH2=132−52
⇔AH=√132−52=12⇔AH=132−52=12
Vậy AH=12cm
a, Xét Δ AHB và Δ AHC, có :
AH là cạnh chung
AB = AC (Δ ABC cân tại A)
HB = HC (AH là đường trung tuyến của BC)
=> Δ AHB = Δ AHC (c.c.c)
b, Xét Δ ABC cân tại A, có :
AH là đường trung tuyến
=> AH là đường cao
=> \(\widehat{AHC}=\widehat{AHB}=90^o\)
c, đề kì dzậy