Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình hướng dẫn nhé
b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\)
\(\Rightarrow AD\perp BC\) là đường cao đồng thời là đường phân giác
\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)
ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ
\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)
a: Ta có: D là tâm đường tròn đường kính BC
=>D là trung điểm của BC
=>BD=5cm
=>AD=12cm
b: Xét (D) có
ΔBFC nội tiếp
BC là đường kính
Do đó; ΔBFC vuông tại F
Xét (D) có
ΔBEC nội tiếp
BC là đường kính
Do đó:ΔBCE vuông tại E
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
a) Ta có AB = AC => cung AB = cung AC => A là điểm chính giữa cung BC => AD vuông góc với BC tại E là trung điểm BC( t/c đường kính, dây và cung) => BE = CE
b) Trong tam giác ABC có AE và BH là 2 đg cao cắt nhau tai G nên G là trực tâm => CK vuông góc AB
c) Ta có góc ACD là góc nội tiếp chắn nửa (O) => góc ACD = 900. => CD vuông góc AC mà BG vuông góc AC => BG // DC.
chứng minh tương tự CG // BD => BDCG là hình bình hành mà BC vuông DG. Vậy BDCG là hình thoi
d) Chứng minh như trên ta có tứ giác AIBG là hình bình hành => M là trung điểm AB, IG => OM là đg trung bình của tg ABD => OM = 1/2BD mà BD = BG => OM =1/2BG hay BG = 2OM
câu a là gợi ý cho câu b đó
DBE cân suy ra DB=DE suy ra cungDE=cungDB
ta có: CBE=1/2 sđ cung DE (1)
BAC=1/2 sđ cung BE = 1/2 sđ(cung DB+DE)=1/2.2sđ cung DE=sđ cung DE (2)
từ 1 và 2 suy ra CBE= 1/2BAC