Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N O S D H E F K P Q I J
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
A B C O T M N
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Ta sẽ chứng minh O thuộc (ATN).
Ta có \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => ^OAC = ^OAB = ^OBA => ^OAT = ^OBN
Ta thấy ^NBM = ^ABC = ^ACB = ^NMB (Do MN // AC) => \(\Delta\)MNB cân tại N => BN = MN
Lại có AN // TM, AT // MN suy ra tứ giác ATMN là hình bình hành => MN = AT
Do đó BN = AT, kết hợp với ^OAT = ^OBN, OA = OB suy ra \(\Delta\)OTA = \(\Delta\)ONB (c.g.c)
=> ^OTA = ^ONB = ^ONA => Bốn điểm O,A,T,N cùng thuộc một đường tròn
Hay đường tròn (ATN) luôn đi qua điểm O cố định (đpcm).