K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó:ΔABM=ΔACM

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

c: Ta có: ΔAHM=ΔAKM

nên AH=AK

hay ΔAHK cân tại A

Xét ΔABC có AH/AB=AK/AC

nên HK//BC

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

5 tháng 5 2016

A B C K P H I M

c.theo chứng minh câu b là tam giác BMH =tam giác KMC nên ta có góc BMH= góc CMK

vì MK vuông góc với AC và BP vuông góc với AC nên BP//MK(từ vuong góc tới//)

nên => góc PMC = góc KMC(đồng vị)

vậy ta có góc PBC= góc BMH( vì cùng bằng góc KMC)

nên tam giác BIM cân tại I

 

5 tháng 5 2016

a) Vì tam giác ABC là tam giác cân có 

    AM là đường trugn tuyến

nên AM vừa là đường cao vừa là đường phân giác

=> Góc BAM = góc MAC 

Xét \(\Delta AMB\) và \(\Delta MAC\)

góc BAM = góc CAM ( CMT)

AM chung

AMB = góc AMC ( cùng bằng 90 độ )

Vậy Tam giác ABM = tam giác AMC  ( c-g-v-g-n-k)

b) Xét tam giác AHM và tam giác AKM có 

AM chung

Góc AHM =AKM ( = 90 độ) 

HAM =MAK ( cmt câu a) 

nên Tam giác  AHM = tam giác AKM (c-h-g-n)

=> HM = MK

và BHM = MKC , góc B= C

Nên tam giác BHM = KMC 

=> HB = KC

c) Ta có BP VUÔNG GÓC VỚI AC 

và MK vuông góc với AC 

Nên BP// MK 

=> góc PBM = KMC 

Mà KMC = HMB ( vÌ  tam giác BHM = KMC )

Suy ra : PBM = góc HMB

Hay tam giác IBM cân tại I

15 tháng 5 2018

a)vì tam giác ABC cân tại A

=>AB=AC và góc ABC=góc ACB

xét tam giác ABM và tam giác ACM có

góc AMB=góc AMC(= 90 độ)

AB=AC

góc ABM=góc ACM

=>tam giác ABM = tam giác ACM (c/h-g/n)

=>MB=MC(2 cạnh tương ứng)

b)ta có BC=24

mà MB=MC

=>M là trung điểm của BC

=>BM=MC=24/2=12 cm

xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:

\(AB^2=AM^2+BM^2\)

\(AM^2=AB^2-BM^2\)

\(AM^2=20^2-12^2\)

\(AM^2=400-144\)

AM^2=256

=>AM=16 cm

c)vì tam giác ABM = tam giác ACM(cmt)

=>góc BAM=góc CAM(2 góc tương ứng)

xét tam giác HAM và tam giác KAM có

góc AHM = góc AKM(= 90 độ)

cạnh AM chung

góc BAM=góc CAM

=>tam giác HAM = tam giác KAM(c/h-g/n)

=>AH=AK(2 cạnh tương ứng)

=>tam giác AHK cân tại A

d)mình không biết làm phàn này nha

4 tháng 5 2019

 Tiếp nè bn :))

c) Vì AH là trung tuyến của tam giác cân ABC

=>AH là phân giác góc BAC(t/c tam giác cân)

=> góc BAH=góc CAH(đ/lí )

Xét tam giác ABG và tam giác ACG có:

AB=AC(gt)

AG chung

góc BAG=góc CAG(G thuộc AH)

=>tam giác BAG=tam giác CAG(c.g.c)

=>Góc BAG= góc CAG (2 góc t/ứng)

4 tháng 5 2019

 Bài này bn tìm kiếm trên mạng là có nhé !

Bn có thể tham khảo ở H

Đã có đầy đủ lời giải rồi

7 tháng 5 2019

bạn học trường nào vậy

7 tháng 5 2019

Hình tự vẽ

C/m: a, Xét \(\Delta ABM\)và \(\Delta ACM\) có:

AB = AC (do tam giác ABC cân tại A)

BM = CM ( do M là trung điểm của BC)

AM chung

=> \(\Delta ABM=\Delta ACM\)(c.c.c)

b, Xét tam giác BHM vuông tại H và CKM vuông tại K có:

BM = MC (do M là trung điểm của BC)

\(\widehat{ABC}=\widehat{ACB}\)(do tam giác ABC cân tại A)

=> \(\Delta BHM=\Delta CKM\)(cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)