Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
D C B A E F 1 2 3 4 1 1
a) Vì tam giác ABC cân tại A
\(\Rightarrow AE\)là phân giác của tam giác ABC
\(\Rightarrow\widehat{A1}=\widehat{A2}=\frac{1}{2}\widehat{BAC}\)
Ta có: \(\hept{\begin{cases}AB=AD\left(gt\right)\\AB=AC\left(gt\right)\end{cases}\Rightarrow}AD=AC\)
\(\Rightarrow\Delta ACD\)cân tại A
\(\Rightarrow AF\)là phân giác của tam giác ACD
\(\Rightarrow\widehat{A3}=\widehat{A4}=\frac{1}{2}\widehat{CAD}\)
Ta có: \(\widehat{A1}+\widehat{A2}+\widehat{A3}+\widehat{A4}=180^0\)( kề bù )
\(2.\widehat{A2}+2.\widehat{A3}=180^0\)
\(\widehat{A2}+\widehat{A3}=90^0\)
\(\widehat{EAF}=90^0\)
\(\Rightarrow AE\perp AF\)
b) Ta có: \(\widehat{E1}+\widehat{F1}+\widehat{EAF}+\widehat{DCB}=360^0\)
\(\widehat{DCB}=90^0\)
c) Vì \(BE=EC=\frac{1}{2}BC=\frac{1}{2}.16=8\)
Áp dụng định lý Py-ta-go vào tam giác ABE vuông tại E ta được :
\(AE^2+BE^2=AB^2\)
\(AE^2+8^2=17^2\)
\(AE^2+64=289\)
\(AE^2=225\)
\(AE=15\)
Vậy AE=15 cm.