Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE
=> ^ABD = ^ACE
TG ABD = TG ACE (c.g.c)
=> ABD=ACE => TG ADE cân(đpcm)
b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)
=> BH=CK (đpcm)
=> DH=KE
* Ta có: AD = AE (vì TG ADE cân)
DH=KE(CMT)
mà AD - DH = AH
AE - KE = AK
=> AH = AK
và DH=KE ( CMT)
Do đó: HK là đường trung bình của TG ADE
=> HK // DE
c, ý b là BOC?
^HBD=^KCE (TG HBD= TG KCE )
=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)
=> TG OBC cân
*
Phần a:
Vì Δ ABC cân ở A
=> ^ABC = ^ACB
và AB = AC mà
^ABD + ^ABC = 180° (kề bù)
và ^ACE + ^ACB =180° (kề bù )
=> ^ABD = ^ACE
Xét ΔABD và ΔACE có:
AB = AC (cmt)
^ABD = ^ACE(cmt)
BD = CE (gt)
=>ΔABD = ΔACE (c.g.c)
=> AD = AE hay ΔADE cân ở A
=> đcpcm
A B C D K E H
a) Ta có: \(\widehat{ABC}+\widehat{ABD}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACE}=180^o\)(kề bù)
Mà \(\widehat{ABC}=\widehat{ACB}\) (do \(\Delta ABC\) cân tại A)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
Xét hai tam giác ABD và ACE có:
\(\widehat{BAD}=\widehat{CAE}\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{ABD}=\widehat{ACE}\) (cmt)
Vậy: \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)
Suy ra: BD = CE (hai cạnh tương ứng)
b) Xét hai tam giác BHD và CKE có:
BD = CE (cmt)
\(\widehat{ADB}=\widehat{AEC}\) (\(\Delta ABD=\Delta ACE\))
Vậy: \(\Delta BHD=\Delta CKE\left(ch-gn\right)\)
Suy ra: BH = CK (hai cạnh tương ứng).
A B C D E 2 2 1 1 M H K O
A)
TA CÓ
\(\widehat{B_1}+\widehat{B_2}=180^o\left(kb\right)\)
\(\widehat{C_1}+\widehat{C_2}=180^o\left(kb\right)\)
mà \(\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
XÉT \(\Delta\)DAB VÀ \(\Delta EAC\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{B_1}=\widehat{C_1}\left(CMT\right)\)
\(DB=EC\left(GT\right)\)
=>\(\Delta DAB=\Delta EAC\left(C-G-C\right)\)
\(\Rightarrow DA=EA\)
=>\(\Delta ADE\)CÂN TẠI A
B) VÌ \(\Delta ADE\)CÂn TẠI A
\(\Rightarrow\widehat{D}=\widehat{E}\)
XÉT \(\Delta DHB\)VÀ\(\Delta EKC\)CÓ
\(\widehat{DHB}=\widehat{EKC}=90^o\)
\(DB=EC\left(GT\right)\)
\(\widehat{D}=\widehat{E}\left(CMT\right)\)
=>\(\Delta DHB=\Delta EKC\left(CH-GN\right)\)
\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)
GIẢ SỬ GỌI O LÀ GIAO ĐIỂM CỦA AM,BH,CK
TA CÓ
\(\widehat{HBD}=\widehat{CBO}\left(Đ^2\right)\)
\(\widehat{ECK}=\widehat{BCO}\left(Đ^2\right)\)
MÀ \(\widehat{HBD}=\widehat{ECK}\)
=>\(\widehat{CBO}=\widehat{BCO}\)
=> \(\Delta COB\)CÂN TẠI O
MÀ BO LÀ TIA ĐỐI CỦA BH
OC LÀ TIA ĐỐI CỦA CK
OM LÀ TIA ĐỐI CỦA MA
=> \(AM,BH,CK\)ĐỒNG QUY TẠI MỘT ĐIỂM
đố các bn mình có mấy giấy khen thi cấp tĩnh ?
mình đoán là 1 giấy khen thi cấp tĩnh
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
Bấm vào đúng là đáp án sẽ hiện lên!!!!
Thử đi