K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

Xét tứ giác MNCB có MN//BC

nên MNCB là hình thang

mà \(\widehat{C}=\widehat{B}\)

nên MNCB là hình thang cân

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(BC=2\cdot MN=2\cdot8=16\left(cm\right)\)

b) Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang(Định nghĩa hình thang)

Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BMNC là hình thang cân

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

b: Xét tứ giác MNCB có

MN//BC

góc B=góc C

=>MNCB là hình thang cân

Bài 2: 

a: Xét ΔABC có

\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

b: Ta có: \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)

\(\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)