Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
a) Vì tam giác ABC cân tại A
\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)
b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:
\(\widehat{A}\) chung
AB = AC
\(\widehat {ABF} = \widehat {ACE}\)
\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )
\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)
\( \Rightarrow \Delta AEF\) cân tại A
c) Xét tam giác IBC có :
\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)
Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )
\( \Rightarrow IB = IC\)( cạnh tương ứng )
Vì EC = BF ( câu b) và IB = IC
\( \Rightarrow \) EC – IC = BF – BI
\( \Rightarrow \) EI = FI
\( \Rightarrow \Delta IEF\) cân tại I
a)vì góc B=góc C
mà góc IBC=1/2 góc EBC và ICB=1/2 góc DCB
nên suy ra IBC=ICB suy ra IBC là tam giác cân
b)xét tam giác ECB và tam giác DBC có
BC là cạnh chung
góc ECB= góc DBC(câu a)
góc B= góc C
suy ra tam giác ECB = tam giác DBC (g.c,g)
cho cái k xong sẽ làm câu c và d
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
a: Xét ΔABC có BD là đường phân giác
nên AB/BC=AD/DC
=>AD/DC=AC/BC(1)
Xét ΔABC có CE là đường phân giác
nên AE/EB=AC/BC(2)
Từ (1) và (2) suy ra AD/DC=AE/EB
=>ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
mà \(\widehat{DBC}=\widehat{EBD}\)
nên \(\widehat{EDB}=\widehat{EBD}\)
b: Xét ΔABC có DE//BC
nên AE/AB=AD/AC
mà AB=AC
nên AE=AD
hay ΔADE cân tại A
b: Xét ΔABD và ΔACE có
\(\widehat{BAD}\) chung
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
A B c F E I
BÀI NÀY KO KHÓ LẮM
BẠN CHỈ CẦN ÁP DỤNG NHỮNG T/C CỦA TAM GIÁC CÂN VÀ XÉT CÁC TAM GIAC BẰNG NHAU