K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

mình cũng trùng bài này nhưng ko pít làm huhu

22 tháng 4 2017

nhớ tk cho ming nha 

A C B M H N

1, Xét tam giác ABC có :

\(BC^2=AC^2+AB^2\)

\(\Leftrightarrow BC^2=4^2+3^2\)

\(\Leftrightarrow BC^2=25\)

\(\Leftrightarrow BC=5\left(cm\right)\)

2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)

\(\widehat{BMH}+\widehat{MBH}=90^O\)

MÀ \(\widehat{ABM}=\widehat{HBM}\)

Nên \(\widehat{BMA}=\widehat{BMH}\)

Xét tam giác ABM và tam giác HBM có :

\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)

\(BMchung\)

\(\widehat{BMA}=\widehat{BMH}\)

\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)

3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)

Xét \(\Delta HMC\)có :

\(\widehat{MHC}=90^0\)

Suy ra :MC>MH(2)

Từ (1) và(2):AM<MC

4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)

Xét tam giác NMA và tam giác CMH có:

\(HC=NA\)

\(\widehat{NAM}=\widehat{CHM}\)

\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)

\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)

\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)

Từ (1) và(2) : => N,M,H thẳng hàng

13 tháng 11 2019

Giúp với mọi người ơi

Mk cho link câu hỏi tương tự

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

17 tháng 7 2019

A B C N M D H I

a, xét tam giác AMB và tam giác NMC có : 

BM = MC do M là trung điểm của BC (gt)

AM = NM do M là trung điểm của AN (Gt)

góc AMB = góc NMC (đối đỉnh)

=> tam giác AMB = tam giác NMC (c-g-c)

b,  tam giác AMB = tam giác NMC (câu a)

=> góc ABM = góc MCN (đn)

c, tam giác AMB = tam giác NMC (câu a) 

=> BA = CN (đn)       (1)

xét tam giác BAH và tam giác BIH có : BH chung

góc BHA = góc BHI = 90 (gt) 

HI = HA (Gt)

=> tam giác BAH = tam giác BIH (2cgv)

=> BI = BA (đn)     (2)

(1)(2) => BI = CN

a) Xét ∆ABM và ∆CMN ta có : 

AM = MN 

BM = MC 

AMB = CMN ( đối đỉnh) 

=> ∆ABM = ∆CMN (c.g.c)

b) Vì ∆ABM = ∆CMN (cmt) 

=> ABM = NCM 

Mà 2 góc này ở vị trí so le trong 

=> AB //NC 

=> DB // NC 

Ta có : BDC + DCN = 180° ( kề bù) 

=> DCN = 90° 

c) Xét ∆ vuông ABH và ∆vuông IHB ta có : 

AH = HI 

BH chung

=> ∆ABH = ∆IHB ( 2 cạnh góc vuông) 

=> BA = BI 

Mà AB = CN (cmt)

=> BI = CN ( cùng bằng BA)