Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
=>AK=BC/2=10(cm)
Câu 2:
a: Xét tứ giác AMCK có
I là trung điểm của MK
I là trung điểm của AC
Do đó: AMCK là hình bình hành
mà MA=MC
nên AMCK là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MI//AB
Do đó:MI là đường trung bình
=>MI//AB
hay MK//AB
Xét tứ giác ABMK có
AB//MK
AK//MB
Do đó: ABMK là hình bình hành
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Ta có: MN ⊥ AB
=> góc MNA = 900
MP ⊥ AC
=> góc MPA = 900
Xét tứ giác ANMP có:
góc MNA = góc MPA = góc NAP = 900
=> tứ giác ANMP là hình vuông
a: Ta có: ΔAMC vuông tại M
=>\(AM^2+MC^2=AC^2\)
=>\(AC^2=16^2+12^2=400\)
=>\(AC=\sqrt{400}=20\left(cm\right)\)
b: Xét tứ giác AMCK có
Q là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
c: Ta có:ΔABC cân tại A
mà AM là đường cao
nên M là trung điểm của CB
Xét ΔCAB có
M,Q lần lượt là trung điểm của CB,CA
=>MQ là đường trung bình của ΔCAB
=>MQ//AB và \(MQ=\dfrac{AB}{2}\)
Ta có: MQ//AB
K\(\in\)MQ
Do đó: MK//AB
d: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là phân giác của góc BAC
Ta có: MQ//AB
P\(\in\)AB
Do đó: MQ//AP
Ta có: \(MQ=\dfrac{AB}{2}\)
\(AP=\dfrac{AB}{2}\)
Do đó: MQ=AP
Xét tứ giác APMQ có
MQ//AP
MQ=AP
Do đó: APMQ là hình bình hành
Hình bình hành APMQ có AM là phân giác của góc PAQ
nên APMQ là hình thoi
e: Để hình chữ nhật AMCK trở thành hình vuông thì AM=CM
mà \(CM=\dfrac{CB}{2}\)
nên \(AM=\dfrac{BC}{2}\)
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)