K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

A B C H E M

a)Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H có :

\(AB=AC\)

\(\widehat{ABC}=\widehat{ACB}\)

=> \(\Delta AHB\)​=\(\Delta AHC\) (ch-gn)

b) Xét \(\Delta AMH\) và \(\Delta CME\) có :

\(AM=MC\)

\(\widehat{AMH}=\widehat{CME}\)

\(ME=MH\)

=> \(\Delta AMH\)​=\(\Delta CME\) (c-g-c)

=> AH=CE

c)Có : \(\widehat{HAM}=\widehat{MCE}\) 

mà \(\widehat{HAM}và\widehat{MCE}\) ở vị trí so le

=> AH//CE

=> \(\widehat{AHB}=\widehat{HCE}=90^o\)

Xét  \(\Delta AHC\) và \(\Delta ECH\) có :

CH chung 

\(\widehat{AHB}=\widehat{HCE}=90^o\)

AH=CE

=> \(\Delta AHC\)=\(\Delta ECH\) (c-g-c)

=>\(\widehat{HCA}=\widehat{EHC}\)

mà \(\widehat{HCA}=\widehat{HBA}\)

=> \(\widehat{HBA}=\widehat{EHC}\)

Mà ​​\(\widehat{HBA}và\widehat{EHC}\) ở vị trí đồng vị​

=> HM//AB

17 tháng 3 2022

mik cảm ơn bn

Xét ΔMAH và ΔMCE có

MA=MC

\(\widehat{AMH}=\widehat{CME}\)(hai góc đối đỉnh)

MH=ME

Do đó: ΔMAH=ΔMCE

=>AH=CE

21 tháng 2 2020

a, xét tam giác AHC và tam giác AHC có: AH chung

AB = AC do tam giác ABC cân tại A (gt)

góc AHB = góc AHC = 90 

=> tam giác AHC = tam giác AHC (ch-cgv)

b,  tam giác AHC = tam giác AHC (câu a)

=> CH = BH (đn)

xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)

HN = HM (gt)

=> tam giác BHN = tam giác CHM (c-g-c)

=> góc BNH = góc HMC (đn) mà 2 góc này slt

=> BN // AC (đl)

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

20 tháng 7 2017

mk nha bn

5 tháng 3 2018

c)Xét \(\Delta\)vuông MHC và \(\Delta\)vuông QHB, ta có: 

  \(\widehat{MCH}=\widehat{QBH}\)\(\Delta ABC\)cân tại A)

\(HC=HB\)(chứng minh câu a)

\(\Rightarrow\)\(\Delta\)vuông MHC = \(\Delta\)vuông QHB ( ch-gn)

\(\Rightarrow\widehat{MHC}=\widehat{QHB}\)mà \(\widehat{MHC}=\widehat{BHN}\left(dd\right)\Rightarrow\widehat{QHB}=\widehat{BHN}\)

Gọi K là trung điểm NQ

Xét tam giác KHQ và tam giác KHN, ta có:

HQ=HN( cùng bằng HM) 

\(\widehat{QHK}=\widehat{KHN}\)(cmt)

\(HK\): cạnh chung

\(\Rightarrow\)tam giác KHQ = tam giác KHN (c.g.c)

\(\Rightarrow\)\(\widehat{K_1}=\widehat{K_2}=90^o\)và QK = KN \(\Rightarrow HB\)là trung trực của NQ hay là BC là trung trực của NQ.

2 tháng 4 2020

đòng nghĩa với dung cảm