K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Cách 1: Dùng pytago với tgiác ABH => BH luôn

Cách 2: Dùng pytago với tgiác ACH => HC 

Mà phải cm H là trung điểm BC nữa => HB. Nhưng cminh cũng không có gì khó khăn đâu mà
Nên tốt nhất bạn chọn cách 1 đi. 

23 tháng 4 2017

Vì \(AH⊥BC\Rightarrow\Delta AHB\) là tam giác vuông

Vì \(\Delta AHB\) vuông \(\Rightarrow AB^2=AH^{^{ }2}+BH^{^{ }2}\left(Py-ta-go\right)\)

                              hay \(^{5^2=4^2+BH^2}\)

                             \(5^2-4^2=BH^2\)

                             \(25-16=BH^2\)

                            \(9=BH^2\Rightarrow BH=\sqrt{9}\Rightarrow BH=3cm\)

Vậy BH=3cm

                                   

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

4 tháng 5 2018

a, Ta có ∆ABC cân ở A(gt)

AH\(\perp\) BC=>AH là đường cao

(1)=>AH đồng thời là trung tuyến=>HB=HC

(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH

b, Áp dụng định lí pyta go cho ∆ABH ta có

AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3

4 tháng 5 2018

d, Xét ∆DHB và ∆EHC có

Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)

Góc B=góc C ( tam giác ABC cân tai A gt)

HB =HC (cmt)

=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H

28 tháng 2 2019

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

17 tháng 4 2022

a) Xét tam giác ABH và tam giác ACH có:

\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)

\(AB=AC\) (Do tam giác ABC cân tại A)

\(AH\) chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)

b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)

Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)

\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)

2 tháng 4 2021

\(AH\perp BC\)

=> AH là đường cao của \(\Delta ABC\)

\(\Delta ABC\) cân tại A có AH là đường cao cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta HAB\) vuông tại H (AH là đường cao) có:

\(AB^2=AH^2+BH^2\left(Pytago\right)\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

12 tháng 4 2016

yêu cầu của câu c là gì vậy

12 tháng 4 2016

a)

xét 2 tam giác vuông ABH và ACH có:

AB=AC(gt)

AH(chung)

suy ra tam giác ABH=ACH(CH-CGV)

suy ra BH=CH và BAH=CAH

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

19 tháng 2 2020

Hình vẽ: 

A B C H 5cm 9cm 4cm

Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có: 

\(AC^2=AH^2+HC^2\)( định lý py-ta-go )

\(\Rightarrow5^2=4^2+HC^2\)

\(\Rightarrow HC^2=5^2-4^2\)

\(\Rightarrow HC^2=25-16\)

\(\Rightarrow HC^2=9\)

\(\Rightarrow HC=\sqrt{9}\)

\(\Rightarrow HC=3cm\)

Ta có: \(BH+HC=9cm\)

mà \(HC=3cm\left(cmt\right)\)

\(\Rightarrow BH=9-3=6cm\)

Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )

\(\Rightarrow AB^2=4^2+6^2\)

\(\Rightarrow AB^2=16+36\)

\(\Rightarrow AB^2=52\)

\(\Rightarrow AB=\sqrt{52}cm\)

Vậy độ dài cạnh AB là \(\sqrt{52}cm\)