Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Lại 1 câu hỏi tào lao, cân tại A sao lại cs AB> AC chứ!
a, Xet tam giac ABH va tam giac ACH co
AH chung ,goc B= goc C ;AB=AC
=>tam giac ABH = tam giac ACH
=>HB=HC (2 canh tuong ung )
=>H la trung diem cua BC
(Bạn tự vẽ hình giùm)
a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)
Cạnh AH chung
=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) => HB = HC => H là trung điểm BC (đpcm)
b/ Ta có \(\Delta AHB\)= \(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{HAC}\)(hai góc tương ứng) => AH là tia phân giác của \(\widehat{BAC}\)(đpcm)
c/ Nối I với H, K với H.
\(\Delta IHB\)vuông và \(\Delta KHC\)vuông có: HB = HC (cm câu a)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta IHB\)vuông = \(\Delta KHC\)vuông (cạnh huyền - góc nhọn) => IB = KC (hai cạnh tương ứng) (1)
và AB = AC (\(\Delta ABC\)cân tại A) (2)
Lấy (2) trừ (1) => AB - IB = AC - KC
=> AI = AK => \(\Delta AIK\)cân tại A => \(\widehat{AIK}=\frac{180^o-\widehat{A}}{2}\)
và \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{AIK}=\widehat{B}\)ở vị trí đồng vị => IK // BC (đpcm)