Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Sao lại chứng minh tam giác ACD= tam giác DMA
Mà tam giác DMC<ADC(xem lại)
b)Xét tam giác DMC và tam giác BMA
MB=MD(gt)
DMC=AMB(đđ)
MA=MC(Vì M là trung điểm AC)
⇒⇒tam giác DMC=tam giác BMA(c.g.c)
⇒⇒AB=DC(cặp cạnh tương ứng)(1)
Mà AB=AC(vì tam giác ABC cân)(2)
Từ (1) và (2) suy ra:DC=AC
Vậy tam giác ACD cân tại D
A B C M D E
a) Xét tam giác BMC và tam giác DMA có:
\(\hept{\begin{cases}\widehat{AMD}=\widehat{BMC}\left(2gocdoidinh\right)\\AM=MC\left(gt\right)\\BM=DM\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta BMC=\Delta DMA\left(c-g-c\right)\)
\(\Rightarrow\widehat{MAD}=\widehat{MCB}\)( 2 góc t. ung )
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AD//BC\)
Bạn này cần sử dụng tính chất đường trung bình ák bạn. Đầu tiên bạn vẽ hình ra.
Ta sẽ CM 2 tam giác ABM = tam giác CMD. Bạn tự chứng mình nhé, tại nó đơn giản!!
=> CD // AB.(1)
Tam giác ABE có : CA =CE CI//AB
=> CI là đường trung bình => I cũng là trung điểm BE
a) tam giác AMD VÀ CMB: MD=MB; GÓC AMD=GÓC CMD(ĐỐI ĐỈNH); MA=MC
=> 2 TAM GIÁC BẰNG NHAU (C.G.C)=> GÓC DAM=GÓC BCM. MÀ 2 GÓC VỊ TRÍ SLT => AD//BC
B) TƯƠNG TỰ CÂU A C/M: TAM GIÁC AMB= TAM GIÁC CMD => GÓC MBA =GÓC MCD.
MÀ 2 GÓC VTRÍ SLT => AB//CD => ABCD LÀ HBH => GÓC ADC=GÓC ABC. <=> GÓC ADC=ACB
MÀ GÓC ACB=GÓC DAC(CMT) => GÓC ADC=GÓC DAC => TAM GIÁC ACD CÂN TẠI C => CA=CD
C) TAM GIÁC DBE : DI LÀ TRUNG TUYẾN. . VÌ ABCD LÀ HBH => M CŨNG LÀ TRUNG ĐIỂM DB => TAM GIÁC DBE: EM CŨNG LÀ TRUNG TUYẾN.
C LÀ TRỌNG TÂM => DI CẮT ME tại C. => D,I,C THẲNG HÀNG. HAY DI ĐI QUA C