Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
mình k hỉu bài này nên mong các bạn có thể giúp đỡ mình nhé
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
Ta có hình vẽ:
A B C M E P 1 2
a/ Xét 2\(\Delta vuông\): \(\Delta BEM\) và \(\Delta CFMcó\):
BM = CM (gt)
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)
=> \(\Delta BEM=\Delta CFM\left(ch-gn\right)\left(đpcm\right)\)
b/ Xét \(\Delta ABMvà\Delta ACM\) có:
AM: chung
AB = AC (\(\Delta ABC\) cân tại A)
BM = CM (gt)
=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
=> \(\widehat{A_1}=\widehat{A_2}\) (g t/ứng)
Gọi giao điêm của AM và EF là K
Ta có: AE + BE = AB
AF + CF = AC
mà BE = CF( \(\Delta BEM=\Delta CFM\) ) ; AB = AC (đã cm)
Xét \(\Delta AEK\) và \(\Delta AFK\) có:
AK: chung
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
AE = AF (cmt)
=> \(\Delta AEK=\Delta AFK\left(c-g-c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}EK=FK\left(1\right)\\\widehat{EKA}=\widehat{FAK}\end{matrix}\right.\)
Có: \(\widehat{EKA}=\widehat{FKA}\) mà \(\widehat{EKA}+\widehat{FKA}=180^o\) (kề bù)
=> \(\widehat{EKA}=\widehat{FKA}=90^o\)
=> AK _l_ EF
Từ (1) và (2) => AK là trung trực của EF
=> AM là trung trực của EF (đpcm)
A B M E F Hình minh họa
Chứng minh :
*) Vì △ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
\(\Rightarrow AB=AC\left(\text{t/c t/g cân}\right)\)
Xét △MEB vuông tại E và △MFC vuông tại F có:
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △MEB = △MFC( ch - gn )
⇒ EM = FM ( tương ứng )
*)Xét △AEM vuông tại E và △AFM vuông tại F có :
EM = FM ( cmt )
AM - cạnh chung
⇒△AEM = △AFM ( ch - cgv )
⇒ AE = AF ( tương ứng )
*)Xét △AMB và △AMC có:
AB = AC ( cmt )
AM - cạnh chung
MB = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(\text{tương ứng}\right)\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\left(\text{kề bù}\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
⇒ AM ⊥ BC ⇒ AM ⊥ EF
*) Vì \(\left\{{}\begin{matrix}AM\perp EF\\AM\perp BC\end{matrix}\right.\) \(\Rightarrow EF\text{//}BC\) ( tính vuông góc đến song song )