Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Sửa đề: Đường trung tuyến AM
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc B=góc C
=>ΔBEM=ΔCFM
b: ΔBEM=ΔCFM
=>BE=CF và ME=MF
AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a./ \(\Delta BEM=\Delta CFM\)vì:
- góc BEM = góc CFM ( = 90o )
- góc EBM = góc FCM (2 góc bằng nhau của tam giác cân ABC tại A)
- => góc EMB = góc FMC ( = 180o - 2 góc bằng nhau)
- MB = MC (vì AM là trung tuyến).
b./ => ME = MF (cạnh tương ứng của 2 tam giác bằng nhau) => M nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (1)
\(\Delta BEM=\Delta CFM\)=> BE = CF => AE = AF ( vì cùng bằng AB - BE = AC - CF)
=> A nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (2)
Từ (1) (2) => AM là trung trực của EF.
A B C M E F D 1 2 K
Xét tam giác ABM và tam giác ACM
có : + AB = AC (gt)
+ BM = CM (gt)
+) AM chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc A1 = góc A2
Xét tam giác AEM và tam giác AFM có :
+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)
+ góc A1 = góc A2
+) AM chung
=> Tam giác AEM = Tam giác AFM (g.c.g)
=> ME = MF (cạnh tương ứng)
=> AE = AF
b) Gọi K là giao điểm của AM và EF
Xét tam giác AEK và tam giác AFK có
+) góc A1 = góc A2
+) AF = AE (cmt)
+) AK chung
=> tam giác AEK = tam giác AFK (c.g.c)
=> EK = FK (cạnh tương ứng)
=> góc AKE = góc AKF (góc tương ứng)
Lại có góc AKE + góc AKF = 180 o
=> góc AKE = góc AKF = 90o
mà EK = FK
=> AK là trung trực của EF
mà K \(\in\)AM
=> AM là trung trực của EF
c) Vì tam giác ABM = tam giác ACM (cmt)
=> góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 o
=> góc AMB = góc AMC = 90o
lạ có MC = MB = 1/2BC
=> AM là trung trực của BC (1)
Vì góc AMB = góc AMC = 90o
mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)
=> góc BMD = góc CMD = 90o
lại có BM = CM = 1/2BC
=> MD là trung trực của BC (2)
Từ (1) (2) => A;M;D thẳng hàng
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
a)Xét tgiac ABM và tgiac ACM,ta cí:
AB=AC(vì tgiac ABC cân tại A)
MC=MB(giả thiết)
AM là cạnh chung
=>tgiac ABM = tgiac ACM(c.c.c)
a) Xét ΔABM và ΔACM có:
AB = AC (ΔABC cân tại A)
Cạnh AM chung
BM = CM (AM là đường trung tuyến của BC)
⇒ ΔABM = ΔACM (c.c.c)
Vậy ΔABM = ΔACM