Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∠ A = 180 ° - 2 α . Tam giác vuông HBC có BC = h/sinα. Kẻ đường cao AI của tam giác ABC thì được
A B C H 30
Tam giác ABH vuông tại H, có góc ABH = 300
=> góc A = 600
mà tam giác ABC cân tại A
=> tam giác ABC đều
=> góc B = góc C = 600
\(\tan A=\tan60^0=\frac{BH}{AH}=\sqrt{3}\)
=> \(AH=\frac{BH}{\sqrt{3}}=\frac{5}{\sqrt{3}}\)
do tam giác ABC đều, BH là đường cao
=> BH đồng thời là trung tuyến
=> \(AC=\frac{10}{\sqrt{3}}\)
Vậy \(AB=AC=BC=\frac{10}{\sqrt{3}}\); \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
AB=căn AH*AC=6(cm)
BC=căn AC^2-AB^2=căn 9^2-6^2=căn 45=3*căn 5(cm)
Xét ΔABC vuông tại B có sin C=AB/AC=6/9=2/3
nên góc C=42 độ
=>góc A=48 độ
Giải
- Áp dụng 1 số hệ thức về cạnh và đường cao trong Δ vuông ABC ta có :
\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
\(\Rightarrow BC=16+9=25\left(cm\right)\)
- Áp dụng định lý Pytago trong \(\Delta AHC\perp H\) ta có :
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(\Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)
- Áp dụng tỉ số lượng giác của góc nhọn trong Δ vuông \(ABC\) ta có :
+ \(\tan C=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\) Góc \(C\approx37\) độ
\(\Rightarrow\) Góc CAH = Góc B = 53 độ
\(\Rightarrow\) Góc BAH = 37 độ