Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E D B C F
a,Vì BE là tia phân giác góc B nên
\(\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\)
Vì CD là tia phân góc góc C nên
\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\)
mà góc B = góc C ( vì tam giác ABC cân tại A )
\(\Rightarrow\)góc ABE = góc EBC = góc ACD = góc DCB
Vậy góc EBC = góc DCB
*Xét tam giác DBC và tam giác ECB có
góc DCB = góc EBC ( theo chứng minh trên )
cạnh BC chung
góc DBC = góc ECB ( tam giác ABC cân )
Do đó : tam giác DBC = tam giác ECB ( g.c.g )
b,Vì EF // CD
\(\Rightarrow\)góc EFB = góc DCB
mà góc DCB = góc EBC ( theo câu a )
\(\Rightarrow\)góc EFB = góc EBC hay góc EFB = góc EBF
Vậy tam giác BEF là tam giác cân tại E
Học tốt
A B C E D F 1 2
câu a ý \(\widehat{DCB}\ne\widehat{ECB}\)NHA PHẢI LÀ CHỨNG MInH \(\widehat{DCB}=\widehat{EBC}\)MỚI ĐÚNG PẠN GHI NHẦM THÌ PHẢI
A)
VÌ \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ BE LÀ PHÂN GIÁC CỦA \(\widehat{B}\)
\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\frac{\widehat{B}}{2}\left(1\right)\)
TA CÓ CD LÀ PHÂN GIÁC CỦA \(\widehat{C}\)
\(\Rightarrow\widehat{ACD}=\widehat{DCB}=\frac{\widehat{C}}{2}\left(2\right)\)
CÓ (1) VÀ (2) MÀ \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{ABE}=\widehat{EBC}=\widehat{ACD}=\widehat{DCB}\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\left(ĐPCM\right)\)
XÉT \(\Delta DBC\)VÀ\(\Delta ECB\)CÓ
\(\widehat{ABC}=\widehat{ACB}\) HAY \(\widehat{DBC}=\widehat{ECB}\)
BC LÀ CẠNH CHUNG
\(\widehat{DCB}=\widehat{EBC}\left(CMT\right)\)
=>\(\Delta DBC\)=\(\Delta ECB\)(G-C-G) (ĐPCM)
B) VÌ \(AF//DC\)
\(\Rightarrow\widehat{F_1}=\widehat{C_2}\left(ĐV\right)\)
MÀ \(\widehat{EBC}=\widehat{DCB}\)HAY\(\widehat{EBC}=\widehat{C_2}\)
\(\Rightarrow\widehat{F_1}=\widehat{EBC}\)( BẮC CẦU )
HAY \(\widehat{F_1}=\widehat{EBF}\)
=> \(\Delta BEF\)CÂN TẠI E ( ĐPCM)
a) Tam giác ABC cân tại A, đường cao AH => H là trung điểm BC.
Xét tam giác BEC có HF song song với BE và đi qua trung điểm BC nên HF = 1/2 BE (ở đây chứng minh hơi cực, bạn tham khảo bài 63 và 64 trang 146 SBT Toán 7 tập một).
Kết hợp với giả thiết => tam giác AHF cân tại H.
b) Ta có ^EBH = ^FHC (do HF // BE), ^EBH = 1/2 ^ABC (BE là tia phân giác ^ABC) và ^ABC = ^HCF (tam giác ABC cân tại A) => ^FHC = 1/2 ^HCF.
c) Ta có ^HFA là góc ngoài tại đỉnh F của tam giác HFC nên ^HFA = ^FHC + ^HCF.
Kết hợp tam giác AHF cân tại H => ^HAC = ^FHC + ^HCF = 1/2 ^HCF + ^HCF = 3/2 ^HCF.
Tam giác AHC vuông tại H => ^HAC + ^HCF = 90 độ hay 3/2 ^HCF + ^HCF = 90 độ => ^HCF = 36 độ.
Từ đây bạn tính các góc còn lại.