Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH bằng một nửa BC=>AH=BH=CH=>tam giác BAH=tam giác CAH(2 cạnh góc vuông)=>góc B=góc C
ta có tam giác ABH cân tại H(AH=HB)=>góc BAH= góc B(tính chất tam giác cân)
tương tự=>góc HAC=góc C
góc B=góc C(CMT)
mà góc B=gócBAH
góc C=góc CAH
=>góc BAC=B+C(=BAH+CAH)
mà B=C=>BAC=2B(C) màBAC+B+C=180 độ=>A=180 độ:4=25 độ
Vì AH bằng một nửa BC=>AH=BH=CH
=>tam giác BAH=tam giác CAH(2 cạnh góc vuông)
=>góc B=góc C
Ta có tam giác ABH cân tại H(AH=HB)
=>góc BAH= góc B(tính chất tam giác cân)
Tương tự ta có: =>góc HAC=góc C
góc B=góc C(CMT)
Mà góc B=góc BAH
góc C = góc CAH
=>góc BAC=B+C(=BAH+CAH)
Mà B=C=>BAC=2B(C) mà BAC+B+C=1800=>A=1800:4=250
Vậy BAC =250
A B C H 1 2
\(AH=\frac{1}{2}BC\) \(\Rightarrow AH=BH=HC\)
=> Tam giác BHA vuông cân \(\Rightarrow\widehat{A}_1=\widehat{B}=45^0\)
=> Tam giác CHA vuông cân \(\Rightarrow\widehat{A}_2=\widehat{C}=45^0\)
\(\Rightarrow\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=45^0+45^0=90^0\)
Vậy \(\widehat{BAC}=90^0\)
CHÚ Ý: đây là định lý đảo của trung tuyến trong tam giác vuông
Do tam giác ABC cân tại A nên AH là đường cao đồng thời cũng là đường trung tuyến
mà theo ĐL đảo ủa đường trung tuyến thì nếu trung tuyến = một nửa cạnh huyền thì tam giác đó vuông
=> tam giác ABC vuông cân tại A
=> A=90
CAM ON BAN NHIEU NHA