K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

ta có: 
AH.BC = BK.AC 
10.BC = 12.AC 
=>BC= 6.AC/5 => BC^2=36.AC^2/25 
mặt khác: 
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100 
=>(1-36/100). AC^2= AH^2 = 100 
=> AC^2 = 100^2/8^2 
=> AC = 100/8 = 25/2 
=> BC = 6.25/2.5=15

11 tháng 8 2016

ta có: 
AH.BC = BK.AC 
10.BC = 12.AC 
=>BC= 6.AC/5 => BC^2=36.AC^2/25 
mặt khác: 
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100 
=>(1-36/100). AC^2= AH^2 = 100 
=> AC^2 = 100^2/8^2 
=> AC = 100/8 = 25/2 
=> BC = 6.25/2.5=15 

k mk nha

Làm ơn đó

19 tháng 2 2021

a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao

\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)

Xét \(\Delta ABH\) và \(\Delta ACH\) có:

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(AH\): cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

19 tháng 2 2021

thật ra chủ yếu là mk muốn tìm lời giải của phần c cơ phần a,b mk lm đc lâu r

 

a: Xét ΔAHC vuông tại H và ΔBKC vuông tại K có

góc C chung

Do đó: ΔAHC\(\sim\)ΔBKC

b: Ta có: ΔAHC\(\sim\)ΔBKC

nên HC/CK=AC/BC

=>6/CK=10/12=5/6

=>CK=7.2(cm)

12 tháng 5 2022

a, Xét Δ AHC và Δ BKC, có :

\(\widehat{AHC}=\widehat{BKC}=90^o\)

\(\widehat{ACH}=\widehat{BCK}\) (góc chung)

=> Δ AHC ∾ Δ BKC (g.g)

b,

Ta có : AB = AC (Δ ABC cân tại A)

Mà AB = 10 (cm)

=> AC = 10 (cm)

Ta có :

Δ ABC cân tại A

AH là đường cao

=> AH là đường trung trực

=> 2HC = BC

=> 2HC = 12

=> HC = 6 (cm)

Ta có : Δ AHC ∾ Δ BKC (cmt)

=> \(\dfrac{AC}{BC}=\dfrac{HC}{KC}\)

=> \(\dfrac{10}{12}=\dfrac{6}{KC}\)

=> \(KC=\dfrac{12.6}{10}=7,2\left(cm\right)\)

Xét Δ BKC vuông tại C, có :

\(S_{\Delta_{BCK}}=\dfrac{1}{2}.CK.BC\)

=> \(S_{\Delta_{BCK}}=43,2\left(cm^2\right)\)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

25 tháng 3 2019

a)Hai tam giác vuông  \(\Delta AHC\approx\Delta BKC\)vì có chung góc nhọn C

b) Vì tam giác AHC đồng dạng tam giác BKC nên

\(\frac{AH}{BK}=\frac{HC}{KC}=\frac{AC}{BC}=\frac{4}{3}\)

Theo định lý Pytago ta có 

\(AH=\sqrt{8^2-3^2}=\sqrt{55}\)

\(\frac{AH}{BK}=\frac{\sqrt{55}}{BK}=\frac{4}{3}\)

\(\Rightarrow BK=\frac{3\sqrt{55}}{4}\)

Theo Pytago ta có

\(KC=\sqrt{6^2-\left(\frac{3\sqrt{55}}{4}\right)^2}=\frac{9}{4}\left(cm\right)\)

\(KA=8-\frac{9}{4}=\frac{23}{4}\left(cm\right)\)

a,Xét ∆ABC và ∆KBA có :
B là góc chung
BAC = BKA
=> ∆ ABC ĐỒNG DẠNG với ∆KBA
=>BA TRên KB = BC TRÊN BA
=>AB²= BK.BC

https://h.vn/hoi-dap/question/585511.html

Bạn xem cả bài ở link này đi(mik gửi cho)

Học tôt!!!!!!!!!!!!

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0