Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường trung tuyến
b: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
A B C H M N I
HM _|_ AB (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AN; HM phân biệt
=> AN // HM (tc)
=> góc NAH = góc AHM (slt)
xét tam giác NAH và tam giác MHA có : AH chung
góc ANH = góc AMH = 90
=> tam giác NAH = tam giác MHA (ch-gn)
=> HM = AN (đn)
b, NA = HM (câu a)
xét tam giác NAM và tam giác HMA có : AM chung
góc NAM = góc HMA = 90
=> tam giác NAM = tam giác HMA (2cgv)
=> AH = MN (đn)
c, AN // HM (câu a)
=> góc NAH = góc AHM (slt) và góc ANM = góc NMH (slt)
xét tam giác NAI và tam giác MHI có : AN = MH (câu a)
=> tam giác NAI = tam giác MHI (g-c-g)
=> NI = IM (đn)
d, A B C H M N I
a, Ta có: Tam giác ABC cân tại A (gt)
=> góc ABC = góc ACB
=> 1/2 góc ABC = 1/2 góc ACB
=> góc IBC = góc ICB
=> Tam giác BIC cân tại I
b, Gọi M là giao điểm của AI với BC
Ta có tam giác BIC cân (câu a)
=> IB = IC ( cặp góc tương ứng )
Xét tam giác ABI và tam giác ACI:
AB = AC (gt)
góc ABI = góc ACI (c.m trên )
IB = IC (c.m trên )
=> Tam giác ABI = tam giác ACI (c.g.c)
=>góc BAI = góc CAI ( cặp góc tương ứng )
Xét tam giác BAM và tam giác CAM
góc BAI = góc CAI (c.m trên)
AB = AC (gt)
góc ABC = góc ACB (gt)
=> tam giác BAM = tam giác CAM (g.c.g)
=>BM = CM (cặp cạnh tương ứng) (1)
=>góc AMB = góc AMC (cặp góc tương ứng )
mà góc AMB + góc AMC = 180o (kề bù)
=> góc AMB = góc AMC = 180o / 2 = 90o (2)
Từ (1)(2) => AI trung trực BC
a) Tam giác BAE = tgiac BFE (ch.gn)
=> BA = BF => B thuộc đường trung trực của AF
=> EA = EF => E thuộc đường trung trực của AF
Do đó BE là đường trung trực của AF
b) hai tgiac = nhau trường hợp góc cạnh góc
c) tam giác eai = tgiac efc ( cgc)
=> ei = ec
d) Ta có EA = EF
mà EF < EC (trong tgiac vuông efc cạnh huyền lớn nhất)
=> EA < EC
a, Ta thấy AB là là trung trực của EH nên AE= AH
tương trự AC là trung trực của HF nên AF=AH
Xét tam giác AEF có AF=AE
vậy tram giác AEF cân tại A
b, Ta thấy BA là trung trực EH nên AEH=AHE
IEH=IHE
suy ra AEI =AHI
Tương tự ta suy ra được được AHK=AFK
mà AFK=AEI nên AHI=AHK
vậy HA là tia phân giác của IHK
c, Ta thấy phân giác ngoài của tam giác HIK là BC và AC cắt nhau tại C
mà phân giác trong và phân giác ngoài của 3 góc trg tam giác đều đồng quy tại 1 điểm nên IC là tia phân giác trong của tam giác HIK
vì phân giác trong của 1 góc tạo với phân giác ngoài 1 góc 90 độ nên IC vuông với AH
từ đó suy ra được BK vuông với AC
Câu c mk ko chắc lắm có sai thì thông cảm nha
Trong △ABC cân tại A có
AI là đường phân giác
=> AI là đường truyên tuyến
=> AI là đường cao
=> AI là đường trung trực
tham khảo
Trong △ABC cân tại A có
AI là đường phân giác
=> AI là đường trung tuyến
=> AI là đường cao
=> AI là đường phân giác