Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi giao điểm của AI và MN là E
vì I là giao của 2 đường trung tuyến trong tam giác nên nó cũng thuộc trung truyến còn lại
=> AI là trung tuyến của ΔABC
mà ΔABC cân tại A nên trung tuyến ứng với BC đồng thời là đường trung trực của BC => AI ⊥ BC
vì MN là đường trung bình của ΔABC nên MN // BC => AI ⊥ MN (1)
=> ∠ABC = ∠AMN
∠ACB = ∠ANM
xét ΔAME và ΔANE có
∠AEM = ∠AEN = 90o
AM = AN
∠AME = ∠ANE
=> ΔAME = ΔANE (ch - gn)
=>ME = NE (2 cạnh tương ứng) (2)
Từ (1)(2) => AI là đường trung trực MN (ĐPCM)
Xét ΔABC có
BM,CN lần lượt là các đường trung tuyến
BM cắt CN tại I
=>I là trọng tâm
=>AI là đường trung tuyến của ΔACB
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI vuông góc CB
=>AI là trung trực của BC
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
c: Ta có: AB=AC
IB=IC
Do đó: AI là đường trung trực của BC(1)
d: Xét ΔABK vuông tại B và ΔACK vuông tại C có
AK chung
AB=AC
Do đó: ΔABK=ΔACK
Suy ra: KB=KC
hay K nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,I,K thẳng hàng
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
=>BN=CM
b: Xét ΔMBC và ΔNCB có
MB=NC
MC=NB
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
=>ΔGBC cân tại G
c: Xét ΔABC có
BN,CM là các đường cao
BN cắt CM tại G
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm
AG cắt BC tại D
DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)