K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

A B C M 40 40

Theo bài ra, ta có \(\widehat{B}=\widehat{C}=40^o\)

\(\Rightarrow\widehat{A}=100^o\)

\(\Rightarrow\widehat{CBM}=100+40=180^o\)(TC góc ngoài tam giác)

Lại có \(BC=BM\Rightarrow\)Tam giác BMC cân tại B

\(\Rightarrow\widehat{BMC}=\widehat{BCM}=\left(180-140\right):2=20^o\)

Vậy AMC = 20 độ

15 tháng 12 2017

À, nhầm chỗ góc CBM là 140 độ bạn nhé, không phải 180 độ đâu, mình đánh nhầm, còn lại phía dưới vẫn đúng bạn nhé

29 tháng 12 2017

 hình bạn tự vẽ nhé

dựng tam giác AMN đều , nối M với C , N với C

Xét tam giác ABC và tam giác CAN có

AM=AN=BC

AC chung

góc CAN=góc ACB=40 độ

\(\Rightarrow\)tam giác ABC=tam giác CAN ( c.g.c)

\(\Rightarrow\)CN=AB=AC

Xét tam giác CMN và tam giác CMA có

AM=MN

AC=NC

CM chung

\(\Rightarrow\)tam giác CMN = tam giác CMA ( c.c.c)

\(\Rightarrow\)góc AMC=góc NMC=\(\frac{1}{2}\)góc AMN=30 độ

9 tháng 9 2023

Phần a thì mình có thể làm được nhưng phần b thì hơi sai sai á bạn.

Bạn xem lại đề nha.

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?Bài 4: Cho tam...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có góc ở đáy bằng 50˚, lấy điểm K nằm trong tam giác sao cho góc KBC=10˚, góc KCB = 30˚. Tính số đo các góc tam giác ABK ?

Bài 2: Trong hình vuông ABCD lấy điểm M sao cho góc MAB = 60˚, góc MCD = 15˚. Tính góc MBC ?

Bài 3: Cho tam giác có góc ABC = 70˚, góc ACB = 50˚, trên cạnh AB lấy M sao cho góc MCB = 40˚, trên cạnh AC lấy điểm N sao cho góc NBC = 50˚. Hãy tính góc NMC ?

Bài 4: Cho tam giác ABC cân tại A, dựng trung tuyến AM và phân giác AD, tính các góc của tam giác ABC biết BD = 2AM

Bài 5: Cho tam giác ABC có góc ABC = 45˚, góc ACB = 120˚, trên tia đối tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB ?

Bài 6: Tam giác ABC cân tại A có góc A = 20˚, các điểm M,N theo thứ tự thuộc các cạnh AB, AC sao cho góc BCM = 50˚, góc CBN = 60˚. Tính góc MNA ?

2
8 tháng 1 2016

dang tung bai di ban 

nhin thay ngai qua

30 tháng 10 2024

Không làm mà đòi có ăn

 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC