K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

A B C K H O

a) Xét \(\Delta AHK\) có :

\(AK=AH\left(gt\right)\)

=> \(\Delta AHK\) cân tại A

Xét \(\Delta ABC;\Delta AHK\) cân tại A có :

\(\widehat{AKH}=\widehat{ABC}\)

Mà : 2 góc này ở vị trí đồng vị

=>\(\text{ KH// BC}\left(đpcm\right)\)

b) Ta có : \(\left\{{}\begin{matrix}AB=AC\\AK=AH\end{matrix}\right.\) (gt)

Mà : \(\left\{{}\begin{matrix}AB=AK+KB\\AC=AH+HC\end{matrix}\right.\)

=> \(BK=HC\)

Xét \(\Delta KBC;\Delta HBC\) có :

\(BK=HC\left(cmt\right)\)

\(\widehat{KBC}=\widehat{HCB}\) ( tính chất tam giác cân)

\(BC:chung\)

=> \(\Delta KBC=\Delta HBC\left(c.g.c\right)\)

=> \(\widehat{BKC}=\widehat{CHB}\) (2 góc tương ứng)

Mà : \(\widehat{BKC}=90^o\Rightarrow\widehat{CHB=90^o}\)

Hay : \(CK\perp AB\left(đpcm\right)\)

c) Từ \(\Delta KBC=\Delta HBC\left(cmt\right)\) - câu b ta có :

\(\widehat{KCB}=\widehat{HBC}\) ( 2 góc tương ứng)

=> \(\Delta OBC\) cân tại O (có 2 góc kề cạnh đáy bằng nhau)

=> \(OB=OC\) (tính chất tam giác cân)

Xét \(\Delta AOB;\Delta AOC\) có :

\(AB=AC\left(gt\right)\)

\(AO:Chung\)

\(OB=OC\left(cmt\right)\)

=> \(\Delta AOB;=\Delta AOC\left(c.c.c\right)\)

=> \(\widehat{OAB}=\widehat{OAC}\) (2 góc tương ứng)

=> OA là tia phân giác của \(\widehat{BAC}\)

Mà theo giả thiết : \(\Delta ABC\) cân tại A

=> OA đồng thời là đường trung trực trong \(\Delta ABC\)

Hay : OA là trung trực của BC (đpcm)

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

Bài 3 

Trả lời:

a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

                                            ~Học tốt!~

13 tháng 4 2020

Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Bài 2 

a, Xét tam giác OBN và tam giác MAO ta có:

OB=OA( giả thiết)

góc OBN= góc OAM=90 độ

có chung góc O

⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)

suy ra: ON=OM(hai cạnh tương ứng)

+ vì OA=OB và ON=OM

suy ra : OM-OB=ON-OA

suy ra : BM=AN

b, theo câu a ta có :

tam giác OBN= tam giác OAM

suy ra : góc ANH = góc BMH( hai góc tương ứng )

xét tam giác HMB và tam giác HAN ta có

BN=AN

góc HAN = góc HBM = 900

góc ANH = góc HBM

suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)

suy ra : HB=HA(hai cạnh tương ứng)

xét tam giác OHA và tam giác OHB ta có

OA=OB(giả thiết)

HB=HA

OH là cạnh chung

suy ra: tam giác OHA = tam giác OHB(c.g.c)

suy ra: góc BOH= góc AOH( hai góc tương ứng)

vậy OH là tia phân giác của góc xOy

c, xét tam giác MOI và tam giác NOI ta có :

OM=On ( giả thiết)

góc BOH= góc HOA

Oi là cạnh chung

suy ra tam giác MOI= tam giác NOI(c.g.c)

suy ra góc MIO = góc NIO (hai góc tương ứng)

mà góc MIO + góc NIO = 1800 ( hai góc kề bù)

nên OI vuông góc với MN

áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng

Bài 3 mình không biết làm :)))

Chúc bạn học tốt ~!

23 tháng 1 2019

a,xét 2 tam giác ABH và ACK 

2 tam giác này bằng nhau theo trường hợp ch-gn

suy ra BH=CK

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

14 tháng 2 2021

Tgiac ABC cân tại A => AB = AC và góc ABC = ACB

a) Xét tgiac ABH và ACK có:

+ AB = AC

+ chung góc A

+ góc AHB = AKC = 90 độ

=> tgiac ABH = ACK (ch-gn)

=> góc ABH = ACK

Mà góc ABC = ACB

=> ABC - ABH = ACB - ACK

=> góc OBC = OCB

=> tgiac OBC cân tại O

=> đpcm

b) Tgiac OBC cân tại O => OB = OC

Xét tgiac OBK và OCH có:

+ góc OKB = OHC = 90 độ

+ OB = OC

+ góc KBO = HCO (cmt)

=>  tgiac OBK = OCH (ch-gn)

=> đpcm

c) Xét tgiac ABO và ACO có:

+ OB = OC

+ AO chung

+ AB = AC

=> tgiac ABO = ACO (ccc)

=> góc BAO = CAO

=> tia AO là tia pgiac của góc BAC (1)

Xét tgiac ABI và ACI:

+ AI chung

+ AB = AC

+ IB = IC

=> tgiac ABI = ACI (ccc)

=> góc BAI = CAI

=> AI là tia pgiac góc BAC (2)

(1), (2) => A, O, I thẳng hàng (đpcm)

9 tháng 5 2019

Trả lời................

Tớ ko biết đúng hay sai nha:

a) Vì ΔΔABC cân tại A

=> AB = AC và ABCˆABC^ = ACBˆACB^

hay KBCˆKBC^ = HCBˆHCB^

Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:

BC chung

KBCˆKBC^ = HCBˆHCB^ (c/m trên)

=> ΔΔCKB = ΔΔBHC (ch - gn)

=> KB = HC (2 cạnh t/ư)

Ta có: AH + HC = AC

AK + KB = AB

mà AB = AC; KB = HC

=> AH = AK

b)

) Xét ΔΔAHB và ΔΔAKC có:

AH = AK (câu a)

BACˆBAC^ chung

AB = AC (câu a)

=> ΔΔAHB = ΔΔAKC (c.g.c)

=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)

hay KBIˆKBI^ = HCIˆHCI^

Xét ΔΔKBI và ΔΔHCI có:

KB = HC (câu a)

KBIˆKBI^ = HCIˆHCI^ (c/m trên)

BKIˆBKI^ = CHIˆCHI^ (= 90o)

=> ΔΔKBI = ΔΔHCI (g.c.g)

=> KI = HI (2 cạnh t/ư)

Xét ΔΔAKI và ΔΔAHI có:

KI = HI (c/m trên)

AI chung

AK = AH (câu a)

=> ΔΔAKI = ΔΔAHI (c.c.c)

=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)

Do đó AI là tia pg của AˆA^.

c)

c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o

mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ