Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tta có góc HBD=góc ABC ( đối đỉnh )
góc KCE=góc ACB ( đối đỉnh )
mà góc ABC=góc ACB ( tam giác ABC cân )
suy ra góc HBD=gócKCE
xét tam giác HBD và KCE có :
HBD=KCE
BHD=CKE (=90 độ )
BD=CE
=) tam giác HBD=KCE
=)HB=CK
b) ta có góc AHB=ACK ( = 180* - góc ABC )
xét tam giác AHB và tam giác AKC có
góc AHB=gócAKC
HB=CK
AB=AC
suy ra tam giác AHB= tam giác AKC
=) góc AHK = góc AKC
c) ta có HD//KE ( cùng vuông vs BC )
mà HD=KE ( tg HBD=tgKCE )
suy ra HKED là hình bình hành
=) HK//DE
d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )
=) góc HAD+BAC=góc KAE+BAC
=) góc HAE= góc KAD
do AB=AC ; BD=CE =) AB+BD=AC+CE
=) AD=AE
xét tg AHE và tg AKD có
góc HAE=góc KAD
AH=AK ( tg AHB=tg AKC )
AE=AD
suy ra tg AHE = tg AKD
e) do HKED là hình bình hành ; HK vuông vs HD
=) HKED là hình chữ nhật
mà I là gđ của 2 đường chéo HE và DK
suy ra ID=IE
xét tg AID và tg AIE có
AD=AE
ID=IE
chung AI
suy ra tg AID=tg AIE
=) góc DAI = góc EAI
=) AI là phân giác goc DAE
mà tg DAE cân tại A
suy ra AI là đường cao tg DAE
=) AI vuông vs DE
a: \(\widehat{HAB}=90^0-60^0=30^0\)
b: Xét ΔAHI và ΔADI có
AH=AD
HI=DI
AI chung
Do đó: ΔAHI=ΔADI
Ta có: ΔAHD cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
c: Xét ΔAHK và ΔADK có
AH=AD
\(\widehat{HAK}=\widehat{DAK}\)
AK chung
Do đó: ΔAHK=ΔADK
Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)
=>DK//AB
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
a, ta có : góc HBD = góc ABC ( đối đỉnh ), góc KCE = góc ACB (đối đỉnh )
mà ABC = ACB ( tam giác ABC cân ) --> góc HBD = góc KCE
Xét tam giác HBD và tam giác KCE có : góc BHD = góc CKE = 90 độ
góc HBD = góc KCE (cmt) ; BD = CE
--> tam giác HBD = KCE ( cạnh huyền góc nhọn ) --> BH = CK.
b. Có AB = AC , BD = CE --> AB + BD = AC + CE hay AD= AE
Xét tam giác AHD và tam giác AKE có :
HD = KE ( tam giác HBD = KCE)
góc ADH = góc AEK( tam giác HBD = KCE )
AD = AE
--> tam giác AHD = AKE ( cgc)--> AH = AK --> tam giác AHK cân tại A -->góc AHB = góc AKC.
c.Ta có : tam giác ABC cân --> góc ABC = góc ACB = \(\frac{180^o-gócBAC}{2}\)
tam giác ADE cân ( AD = AE) --> góc ADE = góc AED \(\frac{180^0-BAC}{2}\)
----> góc ABC = góc ADE --> HK // DE.
d. Có : góc HAD = góc KAE ( tam giác AHD = AKE) --> góc HAD + góc BAC = góc KAE + góc BAC hay góc HAE = góc KAD
Xét tam giác AHE và tam giác AKD có:
AD = AE
góc HAE = góc KAD(cmt)
AH = AK (cmt)
--> tam giác AHE = tam giác AKD (cgc)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.