Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(bn tu ve hinh nha )
a,Xet tam giac AEC va tam giac ABD, ta co:
goc a chung
AB=AC (gt)
goc ABD=goc ACE (=900)
=>tam giac AEC=ABD(g.c.g)
=>AD=AE va BD=CE (tg ung)
b,Theo cau a , ta co ;AD=AE ;AB=AC(cmt)
Ma AB+BE=AE
AC+CD=AD
=>AE-AB=AD-AC
=>BE=CD
Xet tam giac BEC va tam giac CDB , ta co :
BE=CD (cmt0
CB chung
CE=BD(cm cau b )
=> tam giac BEC=tam giac CDB(C.C.C)
c,Goi M la giao diem cua AM vs ED (M thuoc ED)
Theo cau a , AE=AD
Xet tam giac ABI va tam giac ACI , ta co:
goc ABI =goc ACI =900 (gt)
AB=AC(GT)
AI chung
=> tam giac ABI =tam giac ACI(ch-cgv)
=>goc BAI=goc CAI (tg ung)
Xet tam giac AEM va tam giac ADM , ta co
AE=AD (cm cau a)
goc BAI =goc CAI (cmt)
AM chung
=>tam giac AEM =tam giac ADM ( c.g.c)
=>goc AME = goc AMD (tg ung)
ma goc AME+goc AMD =1800(KB)
=>goc AME=goc AMD=1/2*1800=900=>AM vuong goc vs ED
ma I thuoc AM
=>AI vuong goc vs ED
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆHCK^=HBC^ ( cùng phụ với BKCˆBKC^ ) ( 1 )
HCBˆ+HBCˆ=900HCB^+HBC^=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900BCA^+CBA^=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800HCB^+HBC^+BCA^+CBA^=900+900=1800
Hay : HCAˆ+HBAˆ=1800HCA^+HBA^=1800
mà : HBxˆ+HBAˆ=1800HBx^+HBA^=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)HCA^=HBx^(2)
mà : HBCˆ=HBxˆHBC^=HBx^ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau