K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

Trong tam giác AD1E, có AD = AE(gt)  nên tam giác AD1E là tam giác cân tại A

mà Â =50o => góc AD1E = \(\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(1)

Tam giác ABC cân tại A=> góc ABC \(=\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(2)

Từ (1), (2) => góc AD1E = ABC nên tứ giác BDEC là hình thang (ở vị trí đ/vị)

mà  góc D1 +D2 =1800 ( kề bù), do đó D2 = 1800 - D1 = 1800 - 650 = 1150

Vậy góc D trong tứ giác BDEC = 1150

 




 

27 tháng 8 2021

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

16 tháng 9 2021

a) Ta xét: Tam giác ADE có: AD = AE

=> Tam giác ADE cân tại A

\(\Rightarrow\widehat{AED}=\widehat{ACB}\)

=> DE//BC

Ta xét: Tứ giác DECB có: DE//BC

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

=> BDEC là hình thang cân

b) \(\widehat{ABC}=\frac{1}{2}\left(180^o-50^o\right)=65^o\)

\(\widehat{ACB}=\widehat{ABC}=65^o\)

\(\widehat{DEC}=180^o-65^o=115^o\)

\(\widehat{EDB}=\widehat{EDC}=115^o\)

E C B D A

10 tháng 9 2017

a) Ta có AD =  AE nên  ∆ADE cân

Do đó  ˆD1= ˆE1

Trong tam giác ADE có:  D1^ +  ˆE1 + ˆA^=1800

Hay 2ˆD1 = 1800 -  ˆA

ˆD1 = 180 độ −ˆA/2

Tương tự trong tam giác cân ABC ta có ˆB= 180−ˆA/2

Nên ˆD1 = ˆB ( hai góc đồng vị.)

Suy ra DE // BC

Do đó BDEC là hình thang.

Lại có ˆB = ˆC

Nên BDEC là hình thang cân.

b) Với ˆA=500

Ta được ˆB = ˆC = 180−ˆA/2= 180-50/2=65 độ

ˆD2=ˆE2=1800 - ˆB= 1800 - 650=1150

19 tháng 6 2020

A B C D E 1 1 2 2

a) Ta có : AD = AE => \(\Delta ADE\)cân 

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\)

\(\Delta ADE\)có : \(\widehat{A}+\widehat{D_1}+\widehat{E_1}=180^o\)

Mà \(\widehat{D_1}=\widehat{E_1}\)nên \(\widehat{A}+2.\widehat{D_1}=180^o\)

\(\Rightarrow2.\widehat{D_1}=180^o-\widehat{A}\Rightarrow\widehat{D_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)( Vì tam giác ABC cân tại A )

\(\Rightarrow\widehat{A}+2.\widehat{B}=180^o\Rightarrow\widehat{B}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1)(2) => \(\widehat{D_1}=\widehat{B}\)

Mà hai góc ở vị trí đồng vị => DE // BC

=> Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b) 

\(\widehat{A}=50^o\)thay vào (2) ta được :

\(\widehat{B}=\frac{180^o-50^o}{2}=65^o\)

Ta lại có : \(\widehat{B}=\widehat{C}\Rightarrow\widehat{C}=50^o\)

\(DE//BC\Rightarrow\widehat{D_1}+\widehat{B}=180^o\)

\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}=115^o\)

DECB là hình thang cân 

\(\Rightarrow\widehat{E_2}=\widehat{D_2}\Rightarrow\widehat{E_2}=115^o\)

Vậy : \(\widehat{B}=\widehat{C}=65^o\)\(\widehat{D_2}=\widehat{E_2}=115^o\)