K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

Trong tam giác AD1E, có AD = AE(gt)  nên tam giác AD1E là tam giác cân tại A

mà Â =50o => góc AD1E = \(\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(1)

Tam giác ABC cân tại A=> góc ABC \(=\frac{180^0-Â}{2}=\frac{180^0-50^0}{2}=\frac{130^0}{2}=65^0\)(2)

Từ (1), (2) => góc AD1E = ABC nên tứ giác BDEC là hình thang (ở vị trí đ/vị)

mà  góc D1 +D2 =1800 ( kề bù), do đó D2 = 1800 - D1 = 1800 - 650 = 1150

Vậy góc D trong tứ giác BDEC = 1150

 

 

27 tháng 8 2021

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

21 tháng 10 2021

Bạn tham khảo nhé:

Trên tia đối của KG lấy điểm F sao cho KG=KF.

Ta có: ΔABC đều => ^A=600. Xét ΔADE có: ^A=600, AD=AE

=> ΔADE đều. Mà G là trọng tâm của ΔADE

=> G cũng là giao của 3 đường trung trực trong ΔABC 

=> DG=AG (T/c đường trung trực) (1)

Xét ΔGDK và ΔFCK:

KD=KC

^DKG=^CKF              => ΔGDK=ΔFCK (c.g.c)

KG=KF

=> DG=CF (2 cạnh tương ứng). (2)

Từ (1) và (2) => AG=CF.

Cũng suy ra đc: ^GDK=^FCK (2 góc tương ứng) => ^GDE+^EDK=^FCB+^BCK

Lại có: ED//BC (Vì ΔADE đều) => ^EDK=^BCK (So le trong)

=> ^GDE=^FCB (Bớt 2 vế cho ^EDK, ^BCK) (3)

Xét ΔΔADE: Đều, G trọng tâm => DG cũng là phân giác ^ADE

=> ^GDE=^ADE/2=300

Tương tự tính được: ^GAD=300 => ^GDE=^GAD hay ^GDE=^GAB (4)

Từ (3) và (4) => ^GAB=^FCB

Xét ΔAGB và ΔCFB có:

AB=CB

^GAB=^CFB           => ΔAGB=ΔCFB (c.g.c)

AG=CF

=> GB=FB (2 cạnh tương ứng) (5).

=> ^ABG=^CBF (2 góc tương ứng). Lại có:

^ABG+^GBC=^ABC=600. Thay ^ABG=^CBF ta thu được:

^CBF+^GBC=600 => ^GBF=600 (6)

Từ (5) và (6) => ΔGBF là tam giác đều. => ^BGF=600 hay ^BGK=600

K là trung điểm của GF => BK là phân giác ^GBF => ^GBK= ^GBF/2=300

Xét ΔBGK: ^BGK=600, ^GBK=300 => ^BKG=900.

ĐS: ^GBK=300, ^BGK=600, ^BKG=900.

b: Xet ΔAED và ΔABC có

AE/AB=AD/AC

góc A chung

=>ΔAED đồng dạng với ΔABC