Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M K
a) Ta có: AN = NB = 1/2AB (gt)
AM = MC = 1/2AC (gt)
mà AB = AC (gt)
=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN
có: AM = AN (gt)
\(\widehat{A}\): chung
AB = AC (gt)
=> tam giác ABM = tam giác ACN (c.g.c)
b) Ta có: AN = NB (gt)
AM = MC (gt)
=> NM là đường trung bình của tam giác ABC
=> MN // BC
c) Ta có: tam giác ABM = tam giác ACN (cmt)
=> \(\widehat{ABM}=\widehat{ACN}\)
Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
\(\widehat{B}=\widehat{C}\) (gt)
=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC
Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC
=> KD \(\equiv\)AD => A, K, D thẳng hàng
a, Xét \(\Delta ABM\)và \(\Delta CAN\) có
AB = AC ( \(\Delta\)cân )
\(\widehat{A}\) chung
AN = AM
\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Ta có: ΔABM=ΔACN
nên \(\widehat{ABM}=\widehat{ACN}\)
c: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: KB=KC
nên K nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,K,I thẳng hàng
a) vì tam giác ABC cân tại A
nên AB=AC; \(\widehat{B}=\widehat{C}\)
mà CN và BM là đường trung tuyến
=>BM=NC
=>AN=BN ; AM=CM
Xét \(\Delta BNC\)và \(\Delta CMB\)
có: BC là cạnh chung
BN=CM (gt)
BM=NC (gt)
do đó: \(\Delta BNC=\Delta CMB\)
A B C M N E I
a)Vì \(\Delta ABC\)cân , \(BM\) là phân giác của\(\widehat{B}\), \(CN\)là phân giác của \(\widehat{C}\)
\(\Rightarrow\) \(AB=AC\) hay \(\frac{1}{2}AB=\frac{1}{2}AC\) và \(BM\)và \(CN\) cũng là đường trung tuyến ứng vs 2 cạnh \(AB\)và \(AC\)
\(\Rightarrow AM=CM\)và \(AN=BN\)mà \(\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow AM=AN=CM=BN\)
Xét \(\Delta AMN\)có\(AM=AN\Rightarrow\Delta ABC\)cân \(\left(dpcm\right)\)
b)Có
- \(M\)là trung điểm của \(AC\)(do \(BM\)là đường trung tuyến )
- \(N\)là trung điểm của \(AB\)(....)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC\)
\(\Rightarrow MN//BC\left(dpcm\right)\)