K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2018

Theo tính chất tia phân giác của góc ta có:

Bài tập: Tính chất đường phân giác của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Do tam giác ABC cân tại A nên AB = AC nên:

Bài tập: Tính chất đường phân giác của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra : DB = DC.

Mà DB + DC = BC nên:

Bài tập: Tính chất đường phân giác của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a,{ˆA1=ˆA2(t/c.phân.giác)ˆA2=ˆK1(so.le.trong.do.AB//CD)

⇒ˆA1=ˆK1⇒ΔADK.cân.tại.D⇒AD=KD

b,{AD+BC=CDAD=DK⇒DK+BC=CD

Mà DK+KC=CD⇒KC=BC

⇒ΔBKC.cân.tại.C

c,ΔBKC.cân.tại.C⇒ˆK2=ˆB2Mà.ˆK2=ˆB1(so.le.trong.vì.AB//CK)

⇒ˆB2=ˆB1

⇒BK.là.phân.giác.ˆAB

undefined

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:A. BD = 20/7 cm; CD = 15/7cm. B. BD = 15/7 cm; CD = 20/7 cmC. BD = 1,5 cm; CD = 2,5 cmD. BD = 2,5 cm; CD = 1,5 cmBài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:A. DA = 8/3 ; DC = 10/3B. DA = 10/3; DC = 8/3C. DA = 4; DC = 2D. DA = 2,5; DC = 2,5Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

   😨😨 Lm ơn giúp mk lm đc ko thời hạn là trc 7h sáng ngày 7/4 cảm ơn các bn nhiều lm

1
7 tháng 4 2020

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

27 tháng 6 2017

 Bài 1:

Vì AD // BC =>  Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.

=> Góc A = (180 + 20) : 2 = 100 độ

Góc B = 80 độ. 

Vì AD // BC => Góc C cộng góc D bằng 180 độ .

Mà góc D bằng hai lần góc C => 3C = 180 độ

=> Góc C bằng 60 độ. Góc D bằng 120 độ.

11 tháng 9 2018

Bài 2 bạn xem hướng dẫn ở đây nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

11 tháng 9 2018

Bạn xem bài tương tự ở đây nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

30 tháng 3 2018

a)   \(\Delta ABC\)có    \(AD\)  là phân giác   \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\) (tính chất đường phân giác trong tam giác)

hay  \(\frac{BD}{8}=\frac{DC}{10}=\frac{BD+DC}{8+10}=\frac{9}{18}=\frac{1}{2}\)

suy ra:    \(BD=\frac{8}{2}=4\)

              \(DC=\frac{10}{2}=5\)