Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
ta có BD là phân giác tam giác ABC
suy ra AB phần BC bằng AD phần DC bằng 3 phần 2 mà AD cộng DC bằng 6
suy ra AD bằng 6 nhân 3 chia 5 bằng 18 phần 5
xét tam giác ABD và tam giác ACE có
góc A chung
góc ABD bằng góc ACE
vậy tam giác ABD đồng dạng tam giác ACE (g-g)
suy ra AB phần AD bằng AC phần AE
mà góc A chung
vậy tam giác AED đồng dạng tam giác ACB(c-g-c)
suy ra AD phần ED bằng AB phần BC
thế số vào ta được ED bằng 12 phần 5
câu 2 lỡ chứng minh trên rùi
câu 3xét tam giác BEI và tam giác CDI có
góc EBI bằng góc DCI
góc EIB bằng góc DIC ( đối đỉnh )
vậy tam giác BEI đồng dạng tam giác CDI (g-g)
suy ra BE phần IE bằng CD phần ID
tương đương IE nhân CD bằng ID nhân BE
câu cuối
ta có tam giác AED phần tam giác ABC bằng k bình phương
Tam giác AED phần tam giác ABC bằng AD phần AB tất cả bình phương
tương đương AD bình chia cho AB bình băng 9 phần 25 tức là AD chiếm 9 phần AB chiếm 25 phần
ta lấy 6 nhân 9 chia 25 bằng 54 phần 25
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao