Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: ΔABC cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Xét ΔACB có
BM,Cn là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
mà BM=CN
nên BG=CG
b: BG=2/3BM
=>BG=2GM
=>BG=GD
=>G là trung điểm của BD và BD=2BG
CG=2/3CN
=>CG=2GN
=>CG=GE
=>G là trung điểm của CE và CE=2CG
CE=2CG
BD=2BG
mà CG=BG
nên CE=BD
Xét tứ giác BCDE có
G là trung điểm chung của BD và CE
CE=BD
=>BCDE là hình chữ nhật
a: ΔAHB vuông tại H
=>AH<AB
ΔAHC vuông tại H
=>AH<AC
=>AH+AH<AB+AC
=>2AH<AB+AC
=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm của BE và G là trung điểm của CF
Xét tứ giác BFEC có
G là trung điểm chung của BE và CF
=>BFEC là hình bình hành
=>EF=BC
a)
ΔABC có: NA= NB; MA = MC
⇒ NM là đường trung bình của ΔABC
⇒ NM // BC; NM = \(\frac{BC}{2}\) (1)
CMTT với ΔGBC, ta được: EF // BC; EF = \(\frac{BC}{2}\) (2)
Từ (1), (2) ⇒ NM // EF; NM = EF
⇒ Tứ giác MNEF là hình bình hành (đpcm)
b)
Hai đường trung tuyến BM và CN cắt nhau ở G
⇒ G là trọng tâm của ΔABC
⇒ CG = 2NG; BG = 2GM
Mà NK = NG ⇒ KG = 2NG
MI = MG ⇒ IG = 2GM
⇒ CG = KG; BG = IG
⇒ Tứ giác BCIK là hình bình hành (đpcm)
\(\frac{BC}{2}\)
a , trong tam giác BGC có EF là đường trung bình => EF // BC ( *)
trong tam giác ABC có MN là đường trung bình => MN // BC ( * * )
từ (*) (**) => EF // MN (1)
nối AG .
trong tam giác ABG có NE là đường trung bình => NE // AG (***)
trong tam giác ACG có MF là đường trung bình => MF // AG (****)
từ (***) (****) => NE // MF (2 )
từ (1) và (2 )
=> MNEF là hình bình hành ( dấu hiệu 1 sgk )
b . đề sai ở chỗ MT = MG phải ko . mình chữa lại là MI = MG
chứng minh
từ câu a , MNEF là hình bình hành => NG = GF và FG = MG
mà : BE = EG = MG = MI => G là trung điểm của BI (1 )
CF = FG = NG = JN => G là trung điểm của JC ( 2)
từ (1 ) và (2) => JC cắt IB tại trung điểm của mỗi đường <=> JIBC là hình bình hành
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=9^2+12^2=225\)
\(\Leftrightarrow\)\(BC=\sqrt{225}=15\)cm
Diện tích tam giác ABC là:
\(S_{ABC}=\frac{AB.AC}{2}=\frac{9.12}{2}=54\)cm2
b) Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{BAC}=\widehat{BHA}=90^0\)
\(\widehat{ABC}\) chung
suy ra: \(\Delta ABC~\Delta HBA\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Rightarrow\)\(AB.AB=BH.BC\)