K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: ΔABC cân tại A

Xét ΔABM và ΔACN có

AB=AC

góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Xét ΔACB có

BM,Cn là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

mà BM=CN

nên BG=CG

b: BG=2/3BM

=>BG=2GM

=>BG=GD

=>G là trung điểm của BD và BD=2BG

CG=2/3CN

=>CG=2GN

=>CG=GE

=>G là trung điểm của CE và CE=2CG

CE=2CG

BD=2BG

mà CG=BG

nên CE=BD

Xét tứ giác BCDE có

G là trung điểm chung của BD và CE

CE=BD

=>BCDE là hình chữ nhật

a: ΔAHB vuông tại H 

=>AH<AB

ΔAHC vuông tại H

=>AH<AC

=>AH+AH<AB+AC

=>2AH<AB+AC

=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)

b: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm của BE và G là trung điểm của CF

Xét tứ giác BFEC có

G là trung điểm chung của BE và CF

=>BFEC là hình bình hành

=>EF=BC

8 tháng 8 2018

a)

ΔABC có: NA= NB; MA = MC 

⇒ NM là đường trung bình của ΔABC

⇒ NM // BC; NM = \(\frac{BC}{2}\)                                            (1)

CMTT với ΔGBC, ta được: EF // BC; EF = \(\frac{BC}{2}\)      (2)

Từ (1), (2) ⇒ NM // EF; NM = EF

⇒ Tứ giác MNEF là hình bình hành (đpcm)

b)

Hai đường trung tuyến BM và CN cắt nhau ở G

⇒ G là trọng tâm của ΔABC

⇒ CG = 2NG; BG = 2GM

Mà NK = NG ⇒ KG = 2NG

       MI = MG ⇒ IG  = 2GM

⇒ CG = KG; BG = IG

⇒ Tứ giác BCIK là hình bình hành (đpcm) 

\(\frac{BC}{2}\)

23 tháng 9 2018

a , trong tam giác BGC có EF là đường trung bình => EF // BC ( *)
trong tam giác ABC có MN là đường trung bình => MN // BC ( * * )
từ (*) (**) => EF // MN (1)
nối AG . 
trong tam giác ABG có NE là đường trung bình => NE // AG (***)
trong tam giác ACG có MF là đường trung bình => MF // AG (****)
từ (***) (****) => NE // MF (2 )
từ (1) và (2 )
=> MNEF là hình bình hành ( dấu hiệu 1 sgk )
b . đề sai ở chỗ MT = MG phải ko . mình chữa lại là MI = MG
chứng minh
từ câu a , MNEF là hình bình hành => NG = GF và FG = MG
mà : BE = EG = MG = MI => G là trung điểm của BI (1 )
CF = FG = NG = JN => G là trung điểm của JC ( 2)
từ (1 ) và (2) => JC cắt IB tại trung điểm của mỗi đường <=> JIBC là hình bình hành 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

28 tháng 3 2018

a)  Áp dụng định lý Pytago vào tam giác vuông  ABC   ta có:

             \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=9^2+12^2=225\)

\(\Leftrightarrow\)\(BC=\sqrt{225}=15\)cm

Diện tích tam giác  ABC  là:

 \(S_{ABC}=\frac{AB.AC}{2}=\frac{9.12}{2}=54\)cm2

b)   Xét  \(\Delta ABC\)và    \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{BHA}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB.AB=BH.BC\)