Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Ta có: BE=DE
nên E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
hay AE\(\perp\)BD
c: Xét ΔBEK và ΔDEC có
\(\widehat{KBE}=\widehat{CDE}\)
BE=DE
\(\widehat{BEK}=\widehat{DEC}\)
Do đó: ΔBEK=ΔDEC
d: Xét ΔAKC có
AB/BK=AD/DC
nên BD//KC
d) tam giác KBE = t/g CDE
=> KE = CE ( 2 cạnh tương ứng)
=> t/g KEC cân tại E
=> góc EKC = g ECK (3)
g BED= g KEC (4)
Từ (2),(3),(4) => gOBE=gODE=gBED=gKEC
=> BD//KC
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC